Lind

Challenges turning virtual composition into reality

Chris Matthews Justin Cappos Rick McGeer Stephen Neville Yvonne Coady

University of Victoria NYU-Poly HP Labs University of Victoria University of Victoria

Outline

- Talk about useful isolation mechanisms
- Virtual Components
 - Secure
 - Fault Tolerant
 - Dynamic
 - Scalable
- Implementation
- Evaluation techniques
- Discussion

Simple Example

- Logger
- Write a message out to a log file
 - Important messages could be lost?
 - Can the disk fill, and block the application?
 - Could logger be used to write to wrong file?
 - Logger could consume memory?
 - Who can see the logs?

Virtual Components

- Push large protection mechanism, to smaller abstraction
- Make interaction explicit
- Virtual Component:
 - Component size virtual machine
 - VMs at the programming language and thread level

- Guarded with specific permissions
 - access to explicit typed interfaces is enforced by the system
- Virtual Components communicate events asynchronously
- The runtime enforces memory isolation between virtual components
- No shared state

Inter-Component Programming Model

- How do you really build systems this way?
- Who talks to who
- How do we compose components?
- How do we abstract complexities of communication?

Communication

- Ultimate scalability of the system is impacted by communication mechanism
- Component level parallelism
- Problem Spots:
 - TLB and cache coherency overhead, cache misses
 - Latency
 - Performance isolation
 - Reliability
- Asynchronous communication primitive

Composition?

- Avoid hardwired dependency graphs
- OSGi?
- Lifecycle events map to component runtime states [Rellermeyer07]
- POLA

Software Fault Isolation (NaCl)

- Run real x86 (x86_64, ARM), but verify it first
 - You can't verify x86, so restrict it a little so you can
 - Modified compiler, client to verify code at load time
- All interactions are guaranteed to go through the a trampoline interface
- Google implemented this: <u>Native Client</u>
- Two layer sandbox
- Real X86 with assembly, SSE, threading etc

Lind

- A SFI isolated component model
- Components are executable binary code
- Interaction with underlying OS and other components is strictly controlled
- Service runtime written in Python sandbox, provides POSIX API
- Trusted Computing Base!

Evaluation Techniques

- With so many tradeoffs how do we assess the value of a virtual component model?
- How to compare with other work?
- Tradeoff Space:
 - Performance
 - Isolation
 - Security
 - Composition

Performance

- Characterising the costs:
 - Execution overhead (NaCl → 5%)
 - Communication overhead
 - Micro benchmarks
 - Integer ping pong

Isolation

- Hard to measure spatial isolation
 - How good is the underlying isolation
- Micro benchmarks
 - temporal isolation

Composition

- Composition as a first class citizen?
- Can modern tools and practices be applied in the same way as with current component models?

Security

- POLA how well do we achieve it?
- Which current attacks do we retard or stop

Attack	Outcome
Resource Exhaustion	
Buffer Overflow	
CSRF	
Injection Attacks	
Privilege Escalation	
Information Leakage	
Side Channel Attacks	
TOCTTOU Chris Matthews - Lind	

Evaluation Summary

Trait	Metric
Performance	Micro benchmarks
Isolation	Benchmarks and invariance
Security	What does it fix?
Composition	Current techniques apply?

Questions

- Would you use it?
 - Even if it was really slow? (100x slower)
- What existing composition mechanisms might apply here?
- How do we deal with the coupling between structure, performance, isolation and security?
- Applications where this would work?