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Abstract

Virtualization  provides  a  coarse-grained  isolation  
mechanism  that  results  in  large  systems,  with  full  
operating systems and a complete  software stack  as 
their foundation.  Though much of this foundation is  
not  strictly  necessary,  the  programmatic  burden  of  
building systems at a finer-granularity,  on a smaller  
foundation,  has  previously  been  shown  to  be  
prohibitive.   The  aim  of  this  work  is  to  revisit  this  
tension,  and  present  an alternative,  lightweight  and 
composable  approach  to  virtualization  that  we  call  
MacroComponents—software components that run in  
isolation from the rest of the system, but without the  
full foundations of their more traditionally virtualized  
counterparts.   We  argue  that  this  approach  will  
provide a more scalable and sustainable approach for 
composing  robust  services  in  cloud  environments,  
both  in  terms  of  dynamic  system  properties  and  
software engineering qualities.

 
1.  Introduction

One  of  the  challenges  of  cloud  computing  is  the 
complexity  of composing  services in  ways  that  will 
ultimately be not only be efficient, secure, and robust, 
but also scalable and sustainable in the face of system 
evolution.   Virtualization  has  provided  critical 
leverage within this domain.  However, current coarse 
grained virtualization is arguably a mismatch in terms 
of  cloud  service  compositions.   Intuitively,  system 
virtualization allows multiple virtual machines (VMs) 
to be run on one physical host—providing an efficient 
isolated duplicate  of  the  real  machine  [1].   Vendors 
like Citrix  [2],  Microsoft  [3],  Sun  [4],  and  VMware 
[5] all  have successful  offerings  in the virtualization 
space, and each offer the same granularity for system 
decomposition,  consisting  of  a full  operating  system 
and a complete software stack.  

As  an  alternative,  we  present  MacroComponents, 
designed  specifically  to  combine  the  power  of  the 
isolation  currently  provided  by  virtualization  with 
software  engineering  qualities  borrowed  from 
component  systems  for  scalability  and  sustainability 
in  cloud  environments.  In  systems  composed  of 

MacroComponents, components run in isolation from 
the rest of the system, but without the full foundations 
of their more traditionally virtualized counterparts.  

This  paper  starts  with  an  overview  of  some 
background  on  the  well-known  advantages  of 
virtualization  (Section  2),  then  considers  current 
liabilities  in  the  context  of  service  composition 
(Section  3).   The  requirements  of  an  approach  to 
address  these  liabilities,  MacroComponents,  is 
presented  (Section  4)  and  some  implementation 
considerations are discussed (Section 5).

2.  Background and Related Work

Some of the well-known advantages of virtualization 
that make it an alluring platform for cloud computing 
include  improved  resource  utilization,  security, 
robustness and decomposition.  

2.1  Utilization

With respect to the efficient use of system resources, 
virtualization  can  effectively  address  system 
bottlenecks that may arise in cloud environments.  For 
example,  given  a  physical  machine  with  four 
processors,  some  services  may  not  naturally  absorb 
these resources.  Take the case of a database running 
on a VM which only makes use of two processors, a 
second VM with a second instance of the database can 
then  be  configured  to  use  up  the  remaining  two 
processors.  Applying this further throughout a cloud 
environment,  VMs  can  naturally  solve  the 
underutilization  of  hardware  resources,  as  their 
isolation  means  that  if  one  VM does not  fully  load 
system, more VMs can be added to that system until it 
is fully utilized.

2.2  Security 

The isolation provided by  virtualization  has security 
benefits.   Assuming  a  working  and  trusted 
virtualization  platform,  there  should  be  no  way  for 
resources to be unintentionally  shared between VMs. 
In  terms  of  a  malicious  attack  on  the  system, 
virtualization  narrows  the  attack  area  to  explicitly 



exposed and  shared resources.   In  terms  of  privacy, 
there should be no way for one VM to see the contents 
of  another.   This  strong  isolation  has  been  used 
successfully to create honeypot systems, with less risk 
of  compromising  other  VMs  on  the  same  physical 
system [6].  Simple invariants can also be enforced on 
a VM.   Treating  the  virtualized  system as  a  ’black 
box’,  assertions  can  be  made  about  the  system’s 
interactions with the rest of the world.  For example, 
one assertion could be that  a system running  a web 
server  would  only  accept  traffic  on  a  particular 
network port.  Since the system’s traffic can be made 
to pass through the virtualization platform, it  can be 
easily  checked  for  this  property.   More  complex 
assertions and monitoring have also been shown to be 
possible [8].

2.3  Robustness

By spreading a software system across more than one 
VM, the system as a whole can be made more robust. 
The first way isolation makes the system more robust 
is by confining software failures.  Ideally, a software 
failure in one VM should not be able to affect another 
VM.  Although most modern virtualization platforms 
cannot  produce  perfect  isolation,  they  do  a  good 
enough  job  to  contain  many  software  errors. 
Furthermore, if an attacker gains access to a particular 
VM they will still be unable to access the other VMs 
in  that  system.   Isolation  can  also  help  with 
confinement of hardware failures [7].

2.4  Decomposition

The  isolation  imposed  by  virtualization  provides  a 
mechanism  by  which  a  system’s  engineer  can 
decompose the system.  For example, consider a web 
server  and  e-mail  server  on  the  same  physical 
machine.   In  a  virtualized  environment,  they  may 
reside in different VMs on the same physical machine. 
This  potentially  separates  the  stakeholders  of  the 
system, and/or isolates proprietary  modules from the 
rest  of  the  system.   Additional  motivation  to 
decompose a system along these lines can stem from 
issues of  compatibility  in  legacy  systems.   In  brief, 
some of these issues of compatibility include:

• legal: the license that software is written under, 
• technical:  two software  products do not  interact 

well when installed on the same system,
• security:  not  trusting  other  software  on  the 

system,
• quality  of  service:  can  only  guarantee  software 

will work well without other software installed.

Another  important  contribution  of  this  separation  is 
that  it  potentially  better  matches  the  conceptual 

understanding  of  the  system.   Since  each  server 
provides a separate service, having  them running  on 
separate  platforms  allows  a  coarse-granularity  of 
reasoning  along  the  lines  of  separation  of  concerns. 
When the maintainers of a system are reasoning about 
the  services  it  provides,  their  reasoning  need  not 
include details of where the services instantiated.  For 
example,  if  the  e-mail  server  was  moved  behind  a 
firewall,  but  the  web  server  was  not,  virtualization 
would support this conceptual model; however, this is 
not  the case if  the e-mail  server and the web server 
running on the same operating system.

Similarly, developers targeting cloud computing need 
the  same  ability  to  reason  at  this  high  level.   For 
example, in  the Amazon elastic compute cloud [10], 
VMs are the unit that can be purchased for computing. 
Although users do not know the actual structure of the 
system  (and  may  never  be  told),  they  are  able  to 
purchase an amount of computing power in the form 
of a VM that has some physical parameters such as the 
number  of  processors  in  the  amount  of  memory. 
Purchasing  time in  these logical units  does not  have 
any  correspondence  to  the  physical  resources  that 
Amazon is actually offering, and this transparency is 
an important feature of the model provided.

Given all these motivating factors, it is not surprising 
that the notion of a virtual appliance has been gaining 
in popularity in recent years.  A virtual appliance is a 
VM  with  software  prepackaged  and  preconfigured. 
All  the  user  of  the  virtual  appliance  has  to  do  is 
download the virtual  appliance and start it,  adopting 
all of the advantages of virtualization implicitly.  

There  are  many  more  advantages  to  leveraging 
virtualization  for  decomposition.   In  some  systems, 
VMs are able to dynamically  migrate between hosts. 
Additionally, snapshotting enables the system to make 
a copy of the live VM state so that it can be restored 
later  or  archived.   Flash  cloning  is  an  extension  of 
snapshotting  that  allows  the  system  to  instantiate 
snapshots  very  quickly.   In  Potemkin  [6],  flash 
cloning  was used to instantiate a new VM for every 
socket  connection  a  machine  made.   Commercial 
cluster control platforms are also available, in  which 
virtualization  creates  a  number  cluster  nodes  per 
physical machine [11].

2.5  An Example: Web Services

In  order  to  further  consolidate  the  argument  for 
decomposition, consider, for example, a web services 
stack.   One  possible  configuration  of  modern  web 
services stack could be a web server coupled with  an 
application server and database.  All three applications 
can  be  in  one  VM  on  a  physical  machine,  as  in 



Figure 1(a), or each element could be in a separate VM 
as in Figure 1(b). 

(a) Course-grained decomposition

(b) Fine-grained decomposition

Figure 1: Decomposition leveraging virtualization

The  system’s  stakeholder  will  reap  the  expected 
benefits from decomposing the system:

• Isolation:  it  would  be  harder  for  the  three 
elements  of  the  system to unintentionally  affect 
each other.  There are very few shared resources 
between  the  elements,  and  those that  are shared 
(memory, CPU, disk) are all tightly controlled by 
the VM monitor to ensure fairness.

• Security:  all  of  the  communication  with  the 
database’s  VM  would  take  place  through  the 
standard TCP database communication port.  All 
other communication with  the  databases domain 
could be disallowed with a firewall.

• Privacy:  controls  can be placed on the  database 
interface to assure that private information is not 
leaked.   This  should  be  the  only  way  the 
information could leave the system.

• Migration  and  snapshotting,  as  previously 
described.

3.  Composition: Virtualization’s Liability?

Assuming  these  benefits  could  hold  true  for  even 
finer-grained  elements  of  the  system,  further 
decomposition  could  be  desirable.  For  example,  the 
web sever could be further decomposed to remove its 
request  handlers  and  authentication  mechanisms  so 
that the web sever could benefit from their isolation.

We believe  the  costs  associated  with  decomposition 
based  on  virtualization  break  down  into  two 
categories: (1) scalability in terms of dynamic system 
properties, and (2) sustainability  in terms of software 
engineering  challenges  of  constructing  service 
composition.

3.1  Scalability: Dynamic Compromise

One observation that arises from Figure 1 is that the 
overall  time  to  satisfy  a  request  coming  into  the 
system  may  increase.   This  is  because  the 
communication  between  VMs  is  not  as  fast  as  the 
communication  within  a  VM.   Similarly,  there  are 
other costs associated with  the differences between a 
virtualized  duplicate  and  the  physical  machine. 
Timing of events may differ, and resources presented 
to  any  single  VM  may  be  reduced  as  a  result  of 
sharing and contention.   Thus, although VMs can be 
functionally  equivalent to their physical counterparts, 
they  will  display  some  different  behavioral 
characteristics, particularly at a large-scale.  

Additionally,  in practice, isolation provided by  VMs 
is  incomplete.   Modern  VM  monitors  compromise 
between efficiency  and  complete isolation.   Though 
the degree to which a VM monitor isolates VMs varies 
amongst  types  of  virtualization  platforms  and 
implementations, each approach incorporates its own 
built-in set of assumptions that come into play when 
VMs are used as finer-grained building blocks within 
a  larger  system  composition.   The  impact  of  these 
characteristics  are  also  compounded  at  scale.   An 
example of initial experiments to better quantify these 
costs can be found in [12].  These are just some of the 
dynamic costs that the stake holder would have to take 
into  consideration  when  deciding  to  leverage 
virtualization  as  a  more  fine-grained  approach  to 
system composition.

3.2  Sustainability: The Burden of Composition

Though  decomposition  is  effective  in  terms  of 
separation of concerns, virtualization actually does not 
support a similarly nice model for composition.  This 
is at least in part due to the coarse granularity  of the 
approach.   For  example,  given  the  example  in 
Figure 1(b), instead of installing one operating system, 
the stakeholder would have to install  and prepare an 
operating system for each element, tripling that work 
in this example, and possibly tripling licensing fees as 
well.   Each  element  would  have  to  be  individually 
secured and set-up to perform the task required.  The 
configuration of each element’s VM may have to be 
different as well.  Each VM would have to be setup to 
communicate,  and  be  given  a  mechanism  to  do  so 
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with.  Enforcement of system policy would have to be 
done with virtualization unaware OS mechanisms.

At  scale, these costs are potentially  prohibitive,  and 
instead we suggest a lightweight model based on first 
principles for componentization. 

4.  MacroComponents: Requirements

Component  systems  also  allow  developers  to  build 
programs  from  scratch  out  of  compositions  of 
components  which  they  further  customize. 
Component  systems  allow  replacement  of  existing 
parts  without  requiring  major changes to the  rest  of 
the program.  Characteristics that a component model 
needs  to  function  effectively  include  com-
ponentization,  composition,  communication  and 
control.   Here  we   discuss  the  requirements  of  a 
virtualized component model in these terms.

4.1  Componentization

One important issue with component design is finding 
the  appropriate  component  size.   This  could also be 
referred  to  as  the  granularity  of  the  system.   In 
comparison to a VM running  a full  OS, we want  to 
encourage a relatively  small  component  size.   Small 
component  size  would  allow  for  the  minimal 
foundation needed to run a component instead of a full 
OS.  There are at least two factors that could affect our 
component  size:  first,  the computational  overhead of 
components,  second, the  development  burden  of  the 
components.  There are also more pragmatic concerns 
in  the  design  of  a  component  system;  for  example, 
how the components are packaged and how resources 
and information shared between components.   These 
are things that still need to be addressed.

4.2  Composition

The  second  characteristic  of  a  component  system is 
how  components  are  combined  to  form  a  working 
system.  In most component systems there is a simple 
programmatic  way  in  which  you  can  reference  and 
then  invoke  a  component.   Some  systems  have 
dynamic models in which components can be found at 
runtime then invoked.  Ideally our system would have 
programmatic  dynamic  composition  of  components. 
Some of  the  component  model design  points  in  this 
area include:

• the means by which components are referenced,
• the  control  of  the  life-cycle  of  the  components 

and
• their customization within anticipated parameters.

Conventional component models provide insights into 
how these design points could be satisfied.  However, 
one  design  point  that  conflicts  with  modern 
component  systems  is  the  question  of  where  the 
composition  actually  happens.   In  modern  virtual 
architectures the control and creation of VMs happens 
outside of the normal system in a special ’privileged’ 
area.  This mismatch in the location of control has to 
be address in a component system design.

4.3  Communication

Most modern component systems are designed to run 
in  a  single  address  space,  so  communication  is  as 
simple  as  a  function  call.   Inter-process  com-
munication  (IPC)  and  middleware  are  more 
representative of the types of communication a virtual 
component  model  would  have.   They  are  more 
representative  because  they  send  communication 
through  some  sort  of  shared  medium  like  shared 
memory or a network instead of being able to directly 
invoke a function or access data.
Some of the design points that have to be address with 
respect to communication include:

• the medium used communicate between VMs,
• the  way  entities  in  the  system  named  and 

registered,
• the interface if typed communication is required,
• communication semantics and
• the identification of essential services. 

4.4  Control

The  mechanisms  for  controlling  the  communication 
and  behavior  of  components  should  follow  the  key 
design principle aligned with the separation of policy 
and mechanism.  A good system design should allow 
the  application  designer  to  specify  component’s 
policy, and have the system follow though that policy 
with  mechanism.   As  a  result,  some  of  the  design 
points  that  have  to  be  addressed  with  respect  to 
control within a system that uses VMs for fine grained 
decomposition are:

• definition  of  the  mechanisms  necessary  to 
correctly control a component,

• how and where are these mechanisms controlled 
from, in terms of system decomposition and

• where the policies of components is implemented.

4.5  Component Models

Although  we  know  of  no  systems  that  target 
composition  of  virtual  machines,  there  are  several 
interesting  solutions  to composition in  general.   The 
OSGi Framework  [15] is a component  model that  is 



primarily  targeted at Java.  Besides the requirements 
mentioned  above,  the  MacroComponents  framework 
could be designed around the OSGi  Framework  and 
provide  a  similar  model  for  composition  of  VMs. 
OSGi  could  likely  lend  solutions  to  several  of  the 
problems outlined in this section.

Similarly, systems like WSO2's Carbon platform [16] 
might be able to be used to create a minimal operating 
environment for individual MacroComponents.

5.  Implementation Considerations

There are a number of implementation challenges that 
would have to be addressed before using virtualization 
as a composition  mechanism would  be possible.   A 
few key challenges include:

• Changing  the  centralized  control  mechanisms 
employed in current virtualization platforms.

• The scale of the system in terms of the number of 
VMs and the amount of inter-VM communication 
may need to be addressed.

• The speed with  which  VMs can be created, and 
the latency of inter-VM communication needs to 
be addressed.

The following details how we have begun addressing 
the VM creation problem.

5.1  Virtual Machine Creation

The process of creating a new  VM on a system is a 
relatively  heavy  weight  operation.   The  virtual 
machine monitor (VMM) has to allocate the necessary 
memory  for a VM, as well  as prepare any  resources 
that  it  will  share  with  the  rest  of  the  system.   In 
operating  systems,  one commonly  used optimization 
to increase the  speed of  process creation  and  reduce 
overall  memory  consumption  of the system is copy-
on-write [13].  Copy-on-write is a technique in which 
two parties who  have similar  memory  to each other 
transparently share common memory pages instead of 
duplicating  them.   Only  when  a  shared  copy  is 
changed,  is  it  no  longer  common  to  both  parties. 
Instead,  the  divergent  local  copies  are  maintained 
independently.

Copy-on-write  is  one  feature needed in  a system to 
have  VM  creation  via  a  fork/clone  like  model, 
mimicking  process creation in operating  systems.  A 
checkpointing  mechanism  is  used  to  provide  a  VM 
level  fork.   As  with  processes,  this  allows  for  fast 
creation of VMs.  Closely related would be creating a 
VM clone, a VM created from a pre-described image. 
VM  cloning  has  been  used  successfully  in 
Potemkin [6]  to  quickly  provide  a  VM to  service  a 

single request in  a system.  In  theory,  a system like 
this benefits from the isolation properties of VMs on a 
very fine grained level.

Ultimately,  a  copy-on-write  facility  would  decrease 
the memory  usage of a system running  similar code 
bases in separate VMs, and decrease the time it takes 
to create those VMs.  In a system creating and running 
lots  of  MacroComponents  with  similar  base code, a 
fork/clone  facility  is  a  valuable  optimization  while 
still maintaining strong isolation between VMs.

5.2  A Copy-on-write Subsystem 

Copy-on-write  is  implemented  by  having  two 
separate address ranges in virtual memory point to one 
common set of physical pages.  In the common case, 
when a process reads from those virtual addresses, it is 
able to access the shared pages as if they are its own. 
However,  the  pages are marked  as read-only  by  the 
system,  so if  a process writes  to them,  the  memory 
management  unit  (MMU) triggers  a page  fault,  and 
the  operating  system’s  virtual  memory  subsystem is 
able  to  deal  with  the  resulting  trap.   In  the  fault 
handling code, the page is duplicated, and one copy is 
assigned to each process.  The procedure is transparent 
to both processes using the data.

Unfortunately,  preserving  copy-on-write  semantics 
across VMs is more complex  than  it  is  in  operating 
systems,  and  consequently  more  difficult  to 
implement.  There are several domains of control, and 
each  has  to  participate  to  successfully  implement  a 
copy-on-write  within  a  target  VM.   Some  of  the 
points  we  considered  in  this  implementation  are 
outlined as questions below.

• Where  does  the  spare  memory  come  from  to 
duplicate the written pages? And, which VM of 
the  forked  VMs  gets  the  copy  (and  experience 
memory fragmentation)?

• How  will  this  work  with  different  memory 
models?   For  example,  Xen  [14]  has  several 
different  memory  models  that  all  work  slightly 
differently.

• How  is  a  consistent  image  of  memory  possible 
when it is possibly changing as you read it?

5.3  Design Decisions

We have started to develop a copy-on-write subsystem 
for Xen.  The subsystem is centralized around a user 
space library  that  sits in  Domain  0 (the Xen control 
VM).  From there, the library is able to interface with 
the Domain 0 kernel to allocate memory, map memory 
from  the  target  domain  and  interface  with  the 
hypervisor.  This last step involving the hypervisor is 



necessary  to  get  copied  pages  and  perform 
administration  activities  like  starting  and  stopping  a 
particular  copy-on-write.   To  address  some  of  the 
questions  listed above we have  made several  design 
decisions, and assumptions.

• The copy-on-write subsystem is designed to run 
only  on  64-bit  HVM VMs.   This  allows  us  to 
focus on one memory model.

• When duplicating the faulting page, the snapshot 
gets the duplicate page.  This  keeps the faulting 
VM's memory contiguous.

• To  provide  a  consistent  image,  the  user-level 
library will not give its clients direct access to the 
VM's  memory,  but  rather  access  through  an 
interface.  Behind the interface, the copy-on-write 
subsystem  will  synchronize  the  requests  for 
memory with the live memory state of the VM. If 
high  performance  is  needed,  the  clients  can 
circumvent the library's synchronization, but will 
risk seeing inconsistent memory images.

6.  Conclusions

Though  virtualization  improves  system  utilization, 
security and robustness, possible liabilities that surface 
as we attempt  to leverage virtualization for software 
recomposition  include:  (1)  scalability  in  terms  of 
dynamic  system properties,  and  (2)  sustainability  in 
terms  of  software  engineering  challenges  of 
constructing service composition.

MacroComponents  offer  a  lightweight  container  for 
software  components  that  run  in  isolation  from  the 
rest of the system, but without the full foundations of 
their more traditionally  virtualized counterparts.   By 
reducing the foundation upon which  virtualization is 
built,  and  by  incorporating  first  principles  of 
component based software development, this approach 
can provide a more scalable and sustainable approach 
for composing robust services in cloud environments.
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