
Virtualized Recomposition: Cloudy or Clear?

Chris Matthews, Yvonne Coady
University of Victoria

{cmatthew,ycoady}@cs.uvic.ca

Abstract

Virtualization provides a coarse-grained isolation
mechanism that results in large systems, with full
operating systems and a complete software stack as
their foundation. Though much of this foundation is
not strictly necessary, the programmatic burden of
building systems at a finer-granularity, on a smaller
foundation, has previously been shown to be
prohibitive. The aim of this work is to revisit this
tension, and present an alternative, lightweight and
composable approach to virtualization that we call
MacroComponents—software components that run in
isolation from the rest of the system, but without the
full foundations of their more traditionally virtualized
counterparts. We argue that this approach will
provide a more scalable and sustainable approach for
composing robust services in cloud environments,
both in terms of dynamic system properties and
software engineering qualities.

1. Introduction

One of the challenges of cloud computing is the
complexity of composing services in ways that will
ultimately be not only be efficient, secure, and robust,
but also scalable and sustainable in the face of system
evolution. Virtualization has provided critical
leverage within this domain. However, current coarse
grained virtualization is arguably a mismatch in terms
of cloud service compositions. Intuitively, system
virtualization allows multiple virtual machines (VMs)
to be run on one physical host—providing an efficient
isolated duplicate of the real machine [1]. Vendors
like Citrix [2], Microsoft [3], Sun [4], and VMware
[5] all have successful offerings in the virtualization
space, and each offer the same granularity for system
decomposition, consisting of a full operating system
and a complete software stack.

As an alternative, we present MacroComponents,
designed specifically to combine the power of the
isolation currently provided by virtualization with
software engineering qualities borrowed from
component systems for scalability and sustainability
in cloud environments. In systems composed of

MacroComponents, components run in isolation from
the rest of the system, but without the full foundations
of their more traditionally virtualized counterparts.

This paper starts with an overview of some
background on the well-known advantages of
virtualization (Section 2), then considers current
liabilities in the context of service composition
(Section 3). The requirements of an approach to
address these liabilities, MacroComponents, is
presented (Section 4) and some implementation
considerations are discussed (Section 5).

2. Background and Related Work

Some of the well-known advantages of virtualization
that make it an alluring platform for cloud computing
include improved resource utilization, security,
robustness and decomposition.

2.1 Utilization

With respect to the efficient use of system resources,
virtualization can effectively address system
bottlenecks that may arise in cloud environments. For
example, given a physical machine with four
processors, some services may not naturally absorb
these resources. Take the case of a database running
on a VM which only makes use of two processors, a
second VM with a second instance of the database can
then be configured to use up the remaining two
processors. Applying this further throughout a cloud
environment, VMs can naturally solve the
underutilization of hardware resources, as their
isolation means that if one VM does not fully load
system, more VMs can be added to that system until it
is fully utilized.

2.2 Security

The isolation provided by virtualization has security
benefits. Assuming a working and trusted
virtualization platform, there should be no way for
resources to be unintentionally shared between VMs.
In terms of a malicious attack on the system,
virtualization narrows the attack area to explicitly

exposed and shared resources. In terms of privacy,
there should be no way for one VM to see the contents
of another. This strong isolation has been used
successfully to create honeypot systems, with less risk
of compromising other VMs on the same physical
system [6]. Simple invariants can also be enforced on
a VM. Treating the virtualized system as a ’black
box’, assertions can be made about the system’s
interactions with the rest of the world. For example,
one assertion could be that a system running a web
server would only accept traffic on a particular
network port. Since the system’s traffic can be made
to pass through the virtualization platform, it can be
easily checked for this property. More complex
assertions and monitoring have also been shown to be
possible [8].

2.3 Robustness

By spreading a software system across more than one
VM, the system as a whole can be made more robust.
The first way isolation makes the system more robust
is by confining software failures. Ideally, a software
failure in one VM should not be able to affect another
VM. Although most modern virtualization platforms
cannot produce perfect isolation, they do a good
enough job to contain many software errors.
Furthermore, if an attacker gains access to a particular
VM they will still be unable to access the other VMs
in that system. Isolation can also help with
confinement of hardware failures [7].

2.4 Decomposition

The isolation imposed by virtualization provides a
mechanism by which a system’s engineer can
decompose the system. For example, consider a web
server and e-mail server on the same physical
machine. In a virtualized environment, they may
reside in different VMs on the same physical machine.
This potentially separates the stakeholders of the
system, and/or isolates proprietary modules from the
rest of the system. Additional motivation to
decompose a system along these lines can stem from
issues of compatibility in legacy systems. In brief,
some of these issues of compatibility include:

• legal: the license that software is written under,
• technical: two software products do not interact

well when installed on the same system,
• security: not trusting other software on the

system,
• quality of service: can only guarantee software

will work well without other software installed.

Another important contribution of this separation is
that it potentially better matches the conceptual

understanding of the system. Since each server
provides a separate service, having them running on
separate platforms allows a coarse-granularity of
reasoning along the lines of separation of concerns.
When the maintainers of a system are reasoning about
the services it provides, their reasoning need not
include details of where the services instantiated. For
example, if the e-mail server was moved behind a
firewall, but the web server was not, virtualization
would support this conceptual model; however, this is
not the case if the e-mail server and the web server
running on the same operating system.

Similarly, developers targeting cloud computing need
the same ability to reason at this high level. For
example, in the Amazon elastic compute cloud [10],
VMs are the unit that can be purchased for computing.
Although users do not know the actual structure of the
system (and may never be told), they are able to
purchase an amount of computing power in the form
of a VM that has some physical parameters such as the
number of processors in the amount of memory.
Purchasing time in these logical units does not have
any correspondence to the physical resources that
Amazon is actually offering, and this transparency is
an important feature of the model provided.

Given all these motivating factors, it is not surprising
that the notion of a virtual appliance has been gaining
in popularity in recent years. A virtual appliance is a
VM with software prepackaged and preconfigured.
All the user of the virtual appliance has to do is
download the virtual appliance and start it, adopting
all of the advantages of virtualization implicitly.

There are many more advantages to leveraging
virtualization for decomposition. In some systems,
VMs are able to dynamically migrate between hosts.
Additionally, snapshotting enables the system to make
a copy of the live VM state so that it can be restored
later or archived. Flash cloning is an extension of
snapshotting that allows the system to instantiate
snapshots very quickly. In Potemkin [6], flash
cloning was used to instantiate a new VM for every
socket connection a machine made. Commercial
cluster control platforms are also available, in which
virtualization creates a number cluster nodes per
physical machine [11].

2.5 An Example: Web Services

In order to further consolidate the argument for
decomposition, consider, for example, a web services
stack. One possible configuration of modern web
services stack could be a web server coupled with an
application server and database. All three applications
can be in one VM on a physical machine, as in

Figure 1(a), or each element could be in a separate VM
as in Figure 1(b).

(a) Course-grained decomposition

(b) Fine-grained decomposition

Figure 1: Decomposition leveraging virtualization

The system’s stakeholder will reap the expected
benefits from decomposing the system:

• Isolation: it would be harder for the three
elements of the system to unintentionally affect
each other. There are very few shared resources
between the elements, and those that are shared
(memory, CPU, disk) are all tightly controlled by
the VM monitor to ensure fairness.

• Security: all of the communication with the
database’s VM would take place through the
standard TCP database communication port. All
other communication with the databases domain
could be disallowed with a firewall.

• Privacy: controls can be placed on the database
interface to assure that private information is not
leaked. This should be the only way the
information could leave the system.

• Migration and snapshotting, as previously
described.

3. Composition: Virtualization’s Liability?

Assuming these benefits could hold true for even
finer-grained elements of the system, further
decomposition could be desirable. For example, the
web sever could be further decomposed to remove its
request handlers and authentication mechanisms so
that the web sever could benefit from their isolation.

We believe the costs associated with decomposition
based on virtualization break down into two
categories: (1) scalability in terms of dynamic system
properties, and (2) sustainability in terms of software
engineering challenges of constructing service
composition.

3.1 Scalability: Dynamic Compromise

One observation that arises from Figure 1 is that the
overall time to satisfy a request coming into the
system may increase. This is because the
communication between VMs is not as fast as the
communication within a VM. Similarly, there are
other costs associated with the differences between a
virtualized duplicate and the physical machine.
Timing of events may differ, and resources presented
to any single VM may be reduced as a result of
sharing and contention. Thus, although VMs can be
functionally equivalent to their physical counterparts,
they will display some different behavioral
characteristics, particularly at a large-scale.

Additionally, in practice, isolation provided by VMs
is incomplete. Modern VM monitors compromise
between efficiency and complete isolation. Though
the degree to which a VM monitor isolates VMs varies
amongst types of virtualization platforms and
implementations, each approach incorporates its own
built-in set of assumptions that come into play when
VMs are used as finer-grained building blocks within
a larger system composition. The impact of these
characteristics are also compounded at scale. An
example of initial experiments to better quantify these
costs can be found in [12]. These are just some of the
dynamic costs that the stake holder would have to take
into consideration when deciding to leverage
virtualization as a more fine-grained approach to
system composition.

3.2 Sustainability: The Burden of Composition

Though decomposition is effective in terms of
separation of concerns, virtualization actually does not
support a similarly nice model for composition. This
is at least in part due to the coarse granularity of the
approach. For example, given the example in
Figure 1(b), instead of installing one operating system,
the stakeholder would have to install and prepare an
operating system for each element, tripling that work
in this example, and possibly tripling licensing fees as
well. Each element would have to be individually
secured and set-up to perform the task required. The
configuration of each element’s VM may have to be
different as well. Each VM would have to be setup to
communicate, and be given a mechanism to do so

Web Server

Application Server

Database Virtual Machine

Virtual Machine
Monitor

OS

Web Server

Application Server

Database

Virtual Machine
Monitor

Virtual
Machine

Virtual
Machine

Virtual
Machine

with. Enforcement of system policy would have to be
done with virtualization unaware OS mechanisms.

At scale, these costs are potentially prohibitive, and
instead we suggest a lightweight model based on first
principles for componentization.

4. MacroComponents: Requirements

Component systems also allow developers to build
programs from scratch out of compositions of
components which they further customize.
Component systems allow replacement of existing
parts without requiring major changes to the rest of
the program. Characteristics that a component model
needs to function effectively include com-
ponentization, composition, communication and
control. Here we discuss the requirements of a
virtualized component model in these terms.

4.1 Componentization

One important issue with component design is finding
the appropriate component size. This could also be
referred to as the granularity of the system. In
comparison to a VM running a full OS, we want to
encourage a relatively small component size. Small
component size would allow for the minimal
foundation needed to run a component instead of a full
OS. There are at least two factors that could affect our
component size: first, the computational overhead of
components, second, the development burden of the
components. There are also more pragmatic concerns
in the design of a component system; for example,
how the components are packaged and how resources
and information shared between components. These
are things that still need to be addressed.

4.2 Composition

The second characteristic of a component system is
how components are combined to form a working
system. In most component systems there is a simple
programmatic way in which you can reference and
then invoke a component. Some systems have
dynamic models in which components can be found at
runtime then invoked. Ideally our system would have
programmatic dynamic composition of components.
Some of the component model design points in this
area include:

• the means by which components are referenced,
• the control of the life-cycle of the components

and
• their customization within anticipated parameters.

Conventional component models provide insights into
how these design points could be satisfied. However,
one design point that conflicts with modern
component systems is the question of where the
composition actually happens. In modern virtual
architectures the control and creation of VMs happens
outside of the normal system in a special ’privileged’
area. This mismatch in the location of control has to
be address in a component system design.

4.3 Communication

Most modern component systems are designed to run
in a single address space, so communication is as
simple as a function call. Inter-process com-
munication (IPC) and middleware are more
representative of the types of communication a virtual
component model would have. They are more
representative because they send communication
through some sort of shared medium like shared
memory or a network instead of being able to directly
invoke a function or access data.
Some of the design points that have to be address with
respect to communication include:

• the medium used communicate between VMs,
• the way entities in the system named and

registered,
• the interface if typed communication is required,
• communication semantics and
• the identification of essential services.

4.4 Control

The mechanisms for controlling the communication
and behavior of components should follow the key
design principle aligned with the separation of policy
and mechanism. A good system design should allow
the application designer to specify component’s
policy, and have the system follow though that policy
with mechanism. As a result, some of the design
points that have to be addressed with respect to
control within a system that uses VMs for fine grained
decomposition are:

• definition of the mechanisms necessary to
correctly control a component,

• how and where are these mechanisms controlled
from, in terms of system decomposition and

• where the policies of components is implemented.

4.5 Component Models

Although we know of no systems that target
composition of virtual machines, there are several
interesting solutions to composition in general. The
OSGi Framework [15] is a component model that is

primarily targeted at Java. Besides the requirements
mentioned above, the MacroComponents framework
could be designed around the OSGi Framework and
provide a similar model for composition of VMs.
OSGi could likely lend solutions to several of the
problems outlined in this section.

Similarly, systems like WSO2's Carbon platform [16]
might be able to be used to create a minimal operating
environment for individual MacroComponents.

5. Implementation Considerations

There are a number of implementation challenges that
would have to be addressed before using virtualization
as a composition mechanism would be possible. A
few key challenges include:

• Changing the centralized control mechanisms
employed in current virtualization platforms.

• The scale of the system in terms of the number of
VMs and the amount of inter-VM communication
may need to be addressed.

• The speed with which VMs can be created, and
the latency of inter-VM communication needs to
be addressed.

The following details how we have begun addressing
the VM creation problem.

5.1 Virtual Machine Creation

The process of creating a new VM on a system is a
relatively heavy weight operation. The virtual
machine monitor (VMM) has to allocate the necessary
memory for a VM, as well as prepare any resources
that it will share with the rest of the system. In
operating systems, one commonly used optimization
to increase the speed of process creation and reduce
overall memory consumption of the system is copy-
on-write [13]. Copy-on-write is a technique in which
two parties who have similar memory to each other
transparently share common memory pages instead of
duplicating them. Only when a shared copy is
changed, is it no longer common to both parties.
Instead, the divergent local copies are maintained
independently.

Copy-on-write is one feature needed in a system to
have VM creation via a fork/clone like model,
mimicking process creation in operating systems. A
checkpointing mechanism is used to provide a VM
level fork. As with processes, this allows for fast
creation of VMs. Closely related would be creating a
VM clone, a VM created from a pre-described image.
VM cloning has been used successfully in
Potemkin [6] to quickly provide a VM to service a

single request in a system. In theory, a system like
this benefits from the isolation properties of VMs on a
very fine grained level.

Ultimately, a copy-on-write facility would decrease
the memory usage of a system running similar code
bases in separate VMs, and decrease the time it takes
to create those VMs. In a system creating and running
lots of MacroComponents with similar base code, a
fork/clone facility is a valuable optimization while
still maintaining strong isolation between VMs.

5.2 A Copy-on-write Subsystem

Copy-on-write is implemented by having two
separate address ranges in virtual memory point to one
common set of physical pages. In the common case,
when a process reads from those virtual addresses, it is
able to access the shared pages as if they are its own.
However, the pages are marked as read-only by the
system, so if a process writes to them, the memory
management unit (MMU) triggers a page fault, and
the operating system’s virtual memory subsystem is
able to deal with the resulting trap. In the fault
handling code, the page is duplicated, and one copy is
assigned to each process. The procedure is transparent
to both processes using the data.

Unfortunately, preserving copy-on-write semantics
across VMs is more complex than it is in operating
systems, and consequently more difficult to
implement. There are several domains of control, and
each has to participate to successfully implement a
copy-on-write within a target VM. Some of the
points we considered in this implementation are
outlined as questions below.

• Where does the spare memory come from to
duplicate the written pages? And, which VM of
the forked VMs gets the copy (and experience
memory fragmentation)?

• How will this work with different memory
models? For example, Xen [14] has several
different memory models that all work slightly
differently.

• How is a consistent image of memory possible
when it is possibly changing as you read it?

5.3 Design Decisions

We have started to develop a copy-on-write subsystem
for Xen. The subsystem is centralized around a user
space library that sits in Domain 0 (the Xen control
VM). From there, the library is able to interface with
the Domain 0 kernel to allocate memory, map memory
from the target domain and interface with the
hypervisor. This last step involving the hypervisor is

necessary to get copied pages and perform
administration activities like starting and stopping a
particular copy-on-write. To address some of the
questions listed above we have made several design
decisions, and assumptions.

• The copy-on-write subsystem is designed to run
only on 64-bit HVM VMs. This allows us to
focus on one memory model.

• When duplicating the faulting page, the snapshot
gets the duplicate page. This keeps the faulting
VM's memory contiguous.

• To provide a consistent image, the user-level
library will not give its clients direct access to the
VM's memory, but rather access through an
interface. Behind the interface, the copy-on-write
subsystem will synchronize the requests for
memory with the live memory state of the VM. If
high performance is needed, the clients can
circumvent the library's synchronization, but will
risk seeing inconsistent memory images.

6. Conclusions

Though virtualization improves system utilization,
security and robustness, possible liabilities that surface
as we attempt to leverage virtualization for software
recomposition include: (1) scalability in terms of
dynamic system properties, and (2) sustainability in
terms of software engineering challenges of
constructing service composition.

MacroComponents offer a lightweight container for
software components that run in isolation from the
rest of the system, but without the full foundations of
their more traditionally virtualized counterparts. By
reducing the foundation upon which virtualization is
built, and by incorporating first principles of
component based software development, this approach
can provide a more scalable and sustainable approach
for composing robust services in cloud environments.

Acknowledgments

We would like to thank Stephen Neville, Andrew
Warfield, and Jonathan Appavoo for their invaluable
feedback, and many helpful comments and
contributions to this paper.
7. References
[1] G. J. Popek and R. P. Goldberg, “Formal requirements

for virtualizable third generation architectures,”
Commun. ACM, vol. 17, no. 7, pp. 412–421, 1974.

[2] Citrix, “Citrix XenServer 5: Virtualization for every
server in the enterprise,” Website, 2008,
http://www.citrix.com/English/ps2/products/product.asp
?contentID=683148.

[3] Microsoft, “Microsoft Virtualization: Home,” Website,
2008, http://www.microsoft.com/virtualization/.

[4] Sun, “Sun Virtualization Solutions,” Website, 2008,
http://www.sun.com/solutions/virtualization/.

[5] VMware, “VMware: Virtualization via Hypervisor,
Virtual Machine & Server Consolidation,” Website,
2008, http://www.vmware.com/.

[6] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M.Voelker, and S. Savage,
“Scalability, fidelity, and containment in the potemkin
virtual honeyfarm,” in SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems
principles. New York, NY, USA: ACM, 2005,pp.
148–162.

[7] T. C. Bressoud and F. B. Schneider, “Hypervisor-
based fault tolerance,” in SOSP ’95: Proceedings of the
fifteenth ACM symposium on Operating systems
principles . New York, NY, USA: ACM, 1995, pp.1–
11.

[8] Dunlap, G. W.; King, S. T.; Cinar, S.; Basrai, M. A. &
Chen, P. M. “ReVirt: enabling intrusion analysis
through virtual-machine logging and replay” SIGOPS
Oper. Syst. Rev., ACM, 2002, 36, 211-224

[9] J. Chapin, “Hive: Operating system fault containment
for shared-memory multiprocessors,” Stanford
University, Stanford, CA, USA, Tech. Rep., 1997.

[10] Amazon inc, “Amazon Elastic Compute Cloud”,
Website, 2008, http://aws.amazon.com/ec2/.

[11] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S.
Guruprasad, T. Stack, K. Webb, and J. Lepreau.
“Large-scale Virtualization in the Emulab Network
Testbed.” Proceedings of the 2008 USENIX Annual
Technical Conference, Boston, MA, June 2008.

[12] C. Matthews, Y. Coady. S. Neville, “Quantifying
Artifacts of Virtualization: A Framework for Mirco-
Benchmarks” in QuEST '09: The 2009 IEEE
International Workshop on Quantitative Evaluation of
large-scale Systems and Technologies, IEEE, 2009

[13] A. Silberschatz and P. B. Galvin, Operating System
Concepts. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauery, I. Pratt, and A. Warfield,
“Xen and the art of virtualization,” in SOSP’03, 2003,
pp. 1–14.

[15] OSGi Alliance, “OSGi - The Dynamic Module System
for Java”, Website, 2008, http://www.osgi.org.

[16] WSO2 Inc “WSO2 Carbon”, Website, 2008,
http://wso2.org/projects/carbon.

	1. Introduction
	2. Background and Related Work
	2.1 Utilization
	2.2 Security
	2.3 Robustness
	2.4 Decomposition
	2.5 An Example: Web Services

	3. Composition: Virtualization’s Liability?
	3.1 Scalability: Dynamic Compromise
	3.2 Sustainability: The Burden of Composition

	4. MacroComponents: Requirements
	4.1 Componentization
	4.2 Composition
	4.3 Communication
	4.4 Control
	4.5 Component Models

	5. Implementation Considerations
	5.1 Virtual Machine Creation
	5.2 A Copy-on-write Subsystem
	5.3 Design Decisions

	6. Conclusions
	Acknowledgments

	7. References

