
HEY… You got your Paradigm
in my Operating System!

Chris Matthews, Owen Stampflee,
Yvonne Coady

University of Victoria

Jonathan Appavoo
 IBM Research

Marc E. Fiuczynski
Princeton University

Robert Grimm
New York University

ABSTRACT
“People like to live in denial; thinking that
programming shouldn't be * this* hard right? There
must be an easier way, if only those pesky developers
followed $fashionable_methodology_of_the_day...”

Pantelis Antoniou1

Linus Torvalds has gone on the record stating is dislike of C++
kernel code many times, "In fact, in Linux we did try C++ once
already, back in 1992. It sucks. Trust me – writing kernel code in
C++ is a BLOODY STUPID IDEA...” [8]. But today’s
mainstream operating systems are failing to scale. They are not
only unable to unleash the power of true concurrency in multi-
processor systems, but they are equally incapable of effectively
supporting variability in today’s feature-rich kernels. We believe
the inability of these systems to respond to hardware/software
evolution is a direct result of the lack of linguistic support for
higher-level paradigms. This position paper provides examples of
concrete ways in which traditional approaches are no longer
sustainable, and suggests an incremental solution that stands to fit
within current practices in systems development. Through
incremental adoption, we believe this approach will achieve buy-
in from the systems community, otherwise skeptical of the
$fashionable_methodology_of_the_day.

1. INTRODUCTION
Given the complexities of systems code in general, it is natural to
ask if modern programming methodologies and languages can
help address some of the challenges facing system developers.
Though a number of research systems have attempted to
implement an operating system in languages other than C, despite
their demonstrated software engineering advantages, most
mainstream operating systems have rejected modern linguistic
support in their construction. The conventional wisdom in the
systems community seems to be that, though object/aspect
orientation and domain specific languages may be beneficial,
paradigms and runtimes are often cumbersome and inefficient –
rendering them inappropriate for operating system construction.
As a consequence, though a number of systems have been
progressively restructuring services to leverage higher-level
paradigms, it is intentionally done without language support.

On the surface, this resistance can be attributed to the practical
challenges of trying to incrementally mix modules of differing
languages. But we believe that the crux of the problem goes
beyond that. Intentional decoupling of paradigms and language

1 IRC chat, in reference to aspect-oriented programming, Apr/05

mechanisms appear to suggest a fear that opening the door to
linguistic mechanisms will impose unnecessarily heavyweight
manifestations of paradigms, potentially exposing the system to
severe hidden run-time penalties. Given that the majority of any
mainstream operating system will retain its current incarnation in
hand-optimized C code, we advocate incremental adoption of
critical paradigms reunited with linguistic support, albeit with
modern, customizable runtimes.

It is important to note that, though current linguistic support has
not gained favour in the systems community, adherence to higher-
level paradigms is evident in key services, such as file systems
and networking. Given that the systems community relies heavily
on elegant C and Assembler used in crafty ways to ensure that the
code is 100% optimized, the question becomes:

Should system developers buy-in to language mechanisms
when they can selectively apply the paradigms for free?

We believe that some of the newest challenges in kernel
development – such as scalability in both hardware
(multiprocessor systems) and software (variability in feature-rich
kernels) motivate the need for incremental adoption of critical
paradigms coupled with linguistic support. The costs of
maintaining handcrafted code that only loosely leverages high-
level paradigms will finally outweigh the skepticism of adopting
new mechanisms if we can adequately address
performance/adoption concerns in a community that collectively
feels that they have been there, done that, and moved on.

1.1 A Blast from the Past: Bell Bottoms and
Fat Pointers?
A direct descendent of C, Alef [9], is a block structured
concurrent programming language designed for network
application development under Plan 9 from Bell Labs (Lucent). It
supports abstract data types, parameterized (generic) ADTs and
functions, error handling, parallel task synchronization, an
explicit tail recursion statement, and fat (typed) pointers.
Arguably, Alef brought together the best of many linguistic
features to support systems programming, though it never appears
to have thrived outside of Bell’s walls. Since very little can be
found on the runtime characteristics of Alef, perhaps the lesson
learned from the past is more about the politics of programming
languages, as opposed to an indication of a design disaster. If the
systems community were to start to look upon language support
in a more favourable light, who knows – maybe the constructs of
Alef could finally become fashionable and have their day in the
sun?

2. OSes FAIL TO SCALE
Recent trends in processor hardware show us that processor speed
is no longer increasing, but more processing cores are being
added. Intel’s Hyper-Threading is already commonplace, and
both Intel and AMD seem to be pushing to make true dual core
processors commonplace[1, 2]. It does indeed seem, two cores
are better than one. More processors are becoming more common;
however, mainstream operating systems are failing to scale in
terms of both hardware and software support. Hardware
advancements are hidden behind an infrastructure that makes it
difficult to unleash the power of true concurrency in multi-
processor systems. Section 2.1 details the nature of this problem,
and how an object-oriented approach could help to alleviate the
inherent complexities of multi-processor environments. Software
advancements are equally disadvantaged – variants force the
system to lurch awkwardly into a weakened future state, instead
of smoothly evolving into an enlightened state. Section 2.2
overviews the problems with variant evolution, and how an
aspect-oriented approach could aid developers in an unobtrusive
way.

2.1 True Concurrency
The primary mechanism used to deal with the challenges of
synchronization and safety (integrity and consistency) in
multiprogrammed systems is hardware support for disabling
interrupts. Disabling interrupts makes the execution of a code
path atomic, since interrupts are the only events that can cause
current execution to be preempted.

With the introduction of multi-processors, disabling interrupts
alone is not sufficient to ensure safety. The key feature of a
multi-processor is the presence of multiple CPUs, concurrently
executing instructions. Rather than simply interleaving
instructions in response to interrupts, multiple applications and
system requests can be executing in a ``truly concurrent'' fashion.

Shared Memory Multi-Processor (SMP) machines offer a
programming model which is a natural extension of a typical
uniprocessor; a single shared address space. This has resulted in
most general purpose multi-processors today being SMPs. Given
the familiar programming model, it was natural to develop
operating system for SMPs as an incremental extension to
uniprocessor OSes. Although this approach was the natural
course of development, research has shown it is not necessarily
the best approach with respect to yielding high performance SMP
OSes.

The first and foremost challenge in porting a uniprocessor OS to
an SMP is to ensure mutual exclusion. The most common
approach has been to introduce a synchronization primitive into
the uniprocessor code paths, serializing execution while requiring
minimal changes. Initially, most solutions focused on
correctness, that is to say that the techniques proposed ensured
that only one process could be executing the critical section at a
given time. Solutions then progressed to take into account
notions of forward progress, attempting to provide guarantees
about how the processes attempting to execute a critical section
would progress. Later solutions also attempted to account for the
performance of the primitives, ensure efficient execution on
typical hardware platforms.

Most modern operating systems have settled on the semantics of a
lock for synchronization. The implementation of locks to achieve

mutual exclusion on general purpose SMP's typically
synchronizes processors via shared variables. A great deal of
effort has been spent in studying the performance of SMP locking
techniques. Some of the aspects that were studied include: the
effects of busy waiting and blocking when a lock is contended;
the effects of how waiters on a lock are notified of released; the
length of the critical sections associated with a lock; the use of
multiple locks and the associated potential for deadlocks; the
interaction of locks and scheduling; and the impact of hardware
characteristics. There are increased costs associated with read
write sharing of variables due to the attendant rise in
communications.

Despite decades of research and development into SMP operating
systems, achieving good scalability for general purpose
workloads across a wide range of processors has remained
elusive. ``Sharing'' lies at the heart of the problem. By its very
nature, sharing introduces barriers to scalability.

2.1.1 An Abstraction for Sharing: Clustered Objects
Dealing with sharing is not a trivial task. The fine-grain locking
used in traditional systems results in complex and subtle locking
protocols. Also in traditional systems, adding per-processor data
structures leads to obscure code paths that index per-processor
data structures in ad-hoc manners. Clustered Objects were
developed as a model of partitioned objects to simplify the task of
designing high-performance SMP systems software [3]. In the
partitioned object model, an externally visible object is internally
composed of a set of distributed Representative objects. Each
Representative object locally services requests, possibly
collaborating with one or more other Representatives of the same
Clustered Object. Cooperatively, all the Representatives of the
Clustered Object implement the complete functionality of the
Clustered Object. To the clients of the Clustered Object, the
Clustered Object appears and behaves like a traditional object.

Techniques for constructing SMP friendly OSes have been around
for nearly two decades [?]. Both Microsoft and Linux system
developers have gone out of their way to create scheduling data
structures that avoid cache conflicts[?]. The distributed nature of
Clustered Objects make them ideally suited for the design of
multi-processor system software, which often requires a high
degree of modularity and yet benefits from the sharing,
replicating and partitioning of data on a per-resource (object)
basis. Clustered Objects are conceptually similar to design
patterns such as façade [4]; however, they have been carefully
constructed to avoid any shared front end, and are primarily used
for achieving data distribution. IBM Research’s K42 operating
system[5] has taken advantage of these benefits with its Clustered
Objects kernel facility to provide scaleable kernel data structures.

2.1.2 Asking the Right Questions
We offer some initial thoughts about a project to increase the
scalability of the Linux operating system by introducing a
Clustered Object facility. This project is a systems project;
however, it has been acknowledged that taking to heart a more
holistic programming philosophy could improve the quality of the
resulting system if performance is not compromised [3].

Clustered Objects require information from the underlying
operating system to function efficiently [6]. Whether the
Clustered Object runtime system best belongs in the Linux kernel
is still an open question; but there have been clustered object

systems imbedded in kernels before. IBM Research’s K42
operating system [5] is one example of this. K42’s Clustered
Object facility is the template from which our new Clustered
Object facility will be derived.

The K42 Clustered Object facility from which this project’s was
derived already had some interesting traits. Unlike most systems
software it was written in C++, the facility makes use of a simple
inheritance hierarchy to represent the variants of the core
Clustered Object entities (representatives and miss handlers) [6].
There are many different types of representatives (policies) to
deal with different methods of sharing and different hardware
topologies [4]. The K42 creators were able to leverage C++
inheritance to make these policies consistent and the code much
more understandable and well organized.

There are however some aspects of the system that do not nicely
fit into the hierarchy. One example of this is memory allocation.
There are some system rules that may be considered cross cutting
concerns. For example, some representatives are not allowed to
have their constructors called, but rather a custom create()
function is called to create a new instance of a Clustered Object
representative [7]. This is for memory allocation reasons and is
currently enforced with macros. This style of crosscutting
concern might be better implemented as an AspectC++ [10]
aspect that deals with custom memory allocation than scattered
through out the different representative’s code.

2.1.3 A Case for Customization?
Some areas of the Clustered Object facility have not had the same
trickle in of object-oriented ideas. For instance, the Clustered
Object translation and dispatch routines that are responsible for
performing runtime resolutions of Clustered Objects. These
routines use assembly code and vtable manipulation to operate in
an efficient manner outside the rules of regular C++. In a more
“safe” programming environment this might not even be possible.

The use of C++ inheritance did help with the structure of the
system; but the fact remains there was very little that could not
have been done with regular C and some language parlor tricks.
It may only have been necessary for a small C++ front end, and
have the rest of the code in C. This would have the obvious
performance and control benefits; as well, it would ease the
interface with the Linux kernel that is also written in C. The
performance gains may be tangible, but the losses in other areas
may not be. The C++ version has an inherent structure; the C
version may lack some of this structure. Macros may be applied
where aspects might have; however, this process is done by hand
and error prone. All these will lead to less understandability and
more bugs in the system.

The questions become: was the extra structure worth it? Will
another paradigm help or even be able to do the things required?

2.2 Managing Kernel Variants
Developers of kernel variants often start with a mainline kernel
from kernel.org and then apply patches for their application
domain. Many of these patches represent crosscutting concerns
in that they do not fit within a single program module and are
scattered throughout the kernel sources—easily affecting over a
hundred files. It requires nontrivial effort to maintain such a
crosscutting patch, even across minor kernel upgrades due to the
variability of the kernel proper. It is exceedingly difficult to
ensure correctness when integrating multiple variants. To make

matters worse, developers use simple code merging tools that are
limited to textual substitution (e.g., diff and patch), with the result
that patch maintenance is error prone and time consuming.

2.2.1 An Abstraction for Crosscutting: Aspects
Our position is that a better method is needed—beyond diff and
patch—that reduces the amount of work it takes to maintain and
review a crosscutting kernel extension in Linux. We propose a
semantic patch system called c4 for CrossCutting C Code [11].
A semantic patch basically amounts to a set of transformation
rules that precisely specify the conditions under which changes
need to be made and the means for rewriting the affected code.
Its compact yet human readable form lets a community of
developers easily understand and discuss a crosscutting kernel
extension, thereby helping reduce the time and effort required to
evolve the kernel.

2.2.2 Asking the Right Questions
Aspects in the kernel are not a new idea, but what will it take to
get the system community to buy-in to this controversial
paradigm? Much like object-orientation, runtime costs must be
known in advance. Similarly, the ability to customize the
linguistic support, perhaps only providing a limited set of features
relative to application level programming, is a must.

2.2.3 A Case for a Customization?
We aim to reduce developers’ exposure to c4 as much as possible.
In particular, we are exploring how to support simple annotations
of the form aspect(Name){ ...} , which can be added inline at the
beginning or end of system functions and are then automatically
extracted and converted into fully-featured aspects by the c4
compiler.

3. WHY BUY THE COW?
Given these concrete ways in which traditional approaches are no
longer sustainable, we now advocate an incremental solution that
stands to fit within current practices – and perhaps political
climate–-of systems development. Through incremental
adoption, we believe this approach will achieve buy-in from the
systems community, otherwise skeptical of the
$fashionable_methodology_of_the_day.

Primarily, we need to lay down our swords and think in
nonpartisan terms about problems that are not met by current
mechanisms, and what the important abstractions in the kernel
really are.

We believe there is compelling evidence to suggest that if
clustered objects and crosscutting concerns were first class
citizens in kernel code, complete with first class linguistic
support, kernels would be better equipped to cope with both
hardware and software evolution.

Given that clustered objects have already been implemented in
C++, this begs the question as to whether a module of this nature
is viable and of interest to the community. That is, could the
current implementation of clustered objects be extracted from
K42 and transplanted into a mainstream OS, and if so, what are
the barriers to its acceptance?

We believe that a first step in this direction is to get a more
accurate accounting of maintenance and runtime costs. If they are
prohibitive, then a lighter-weight runtime can be customized
using a tool such as xtc [12]. Such an approach could most

flexibly support objects, aspects, and other necessary constructs.
With kernels being restructured according to object-based
paradigms, grafting this implementation into a mainstream
operating system may be as easy as leveraging a polymorphic
dispatch along the page fault path. Given runtime costs can be
shown to be acceptable, then we return to the original question:

Should system developers buy-in to language mechanisms
when they can selectively apply the paradigms for free?

In an environment where selectively can mean inconsistently,
incompletely, and inefficiently, and free can mean minimal
microbenchmark performance penalty but maximal system
compromise (for example, in terms of true concurrency) and
maintenance fees, we believe the evidence we have gathered to
date shows the answer is unequivocally, YES!

Linguistic support, such as that provided by aspect-oriented
programming, has shown to present an important foundation upon
which more powerful programming tools can be bolted-on. The
fact that tools can leverage information explicitly declared in
pointcuts and help developers visualize both internal invariants
and external interaction comprehensively. IVY [13] is one such
example that suggests a new, better way of support
metaprogramming (macros), but they provide a tool (macroscope)
to support the translation of existing cpp macros to IVY macros.

4. CONCLUSIONS
If the gap between the Programming Language and Systems
communities can be bridged, kernel code may one day scale to
accommodate evolution in both hardware and software. To date,
the systems community focuses on using solutions that address a
particular point of pain fully, while the former often focuses on a
disjoint problem set. Arguably, there is currently too much
work and trust required by the systems community to adopt
solutions from the languages community. To bridge the gap, it is
necessary for the languages community to build a set of tools that
not only introduce a new paradigm, but also help in
refactoring existing code from its current state to fit such new
paradigms.

REFERENCES
[1] Intel, "Dual-Core Server Processors," Intel Corporation,
http://www.intel.com/business/bss/products/server/dual-core.htm.

2005.
[2] AMD, "Welcome to AMD Multi-Core Technology,"

Advanced Micro Devices, Inc,
http://multicore.amd.com/Global/. 2005.
[3] G. Yilmaz and N. Erdogan, "Partitioned Object Models

for Distributed Abstractions," presented at 14th
International Symp. on Computer and Information
Sciences (ISCIS XIV), Kusadasi, Turkey, 1999.

[4] E. Gamma, R. Helm, and R. Johnson, Design Patterns.
Elements of Reusable Object-Oriented Software:
Addison-Wesley, 1995.

[5] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn, O.
Krieger, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis, "K42 Overview," IBM TJ
Watson Research 2002.

[6] J. Appavoo, "Clustered Objects: Initial Design,
Implementation and Evaluation," in Computer Science.
Toronto: University of Toronto, 1998, pp. 1-103.

[7] J. Appavoo, "phone conversations," C. Matthews, Ed.
Victoria, 2005.

[8] Kerneltrap.org,
http://kerneltrap.org/node/2067?PHPSESSID=3cf6f33d
c7f40cedfe6014fc385fe239

[9] Alef, http://lists.cse.psu.edu/archives/9fans/1995-
October/004370.html

[10] AspectC++, http://www.aspectc.org/
[11] Marc Fiuczynski,; Robert Grimm, Yvonne Coady,

David Walker, "patch (1) Considered Harmful", HotOS
X, 2005.

[12] xtc, Extensible C, http://www.cs.nyu.edu/rgrimm/xtc/
[13] Eric Brewer, Jeremy Condit, Bill McCloskey, Feng

Zhou, "Thirty Years is Long Enough: Getting Beyond
C", HotOS X, 2005.

