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ABSTRACT 
“People like to live in denial; thinking that 
programming shouldn't be * this*  hard right?  There 
must be an easier way, if only those pesky developers 
followed $fashionable_methodology_of_the_day...”  

Pantelis Antoniou1 

  
Linus Torvalds has gone on the record stating is dislike of C++ 
kernel code many times, "In fact, in Linux we did try C++ once 
already, back in 1992. It sucks. Trust me – writing kernel code in 
C++ is a BLOODY STUPID IDEA...” [8].  But today’s 
mainstream operating systems are failing to scale.  They are not 
only unable to unleash the power of true concurrency in multi-
processor systems, but they are equally incapable of effectively 
supporting variability in today’s feature-rich kernels.   We believe 
the inability of these systems to respond to hardware/software 
evolution is a direct result of the lack of linguistic support for 
higher-level paradigms.  This position paper provides examples of 
concrete ways in which traditional approaches are no longer 
sustainable, and suggests an incremental solution that stands to fit 
within current practices in systems development.  Through 
incremental adoption, we believe this approach will achieve buy-
in from the systems community, otherwise skeptical of the 
$fashionable_methodology_of_the_day. 
 

1. INTRODUCTION 
Given the complexities of systems code in general, it is natural to 
ask if modern programming methodologies and languages can 
help address some of the challenges facing system developers. 
Though a number of research systems have attempted to 
implement an operating system in languages other than C, despite 
their demonstrated software engineering advantages, most 
mainstream operating systems have rejected modern linguistic 
support in their construction.  The conventional wisdom in the 
systems community seems to be that, though object/aspect 
orientation and domain specific languages may be beneficial, 
paradigms and runtimes are often cumbersome and inefficient – 
rendering them inappropriate for operating system construction.  
As a consequence, though a number of systems have been 
progressively restructuring services to leverage higher-level 
paradigms, it is intentionally done without language support.   

On the surface, this resistance can be attributed to the practical 
challenges of trying to incrementally mix modules of differing 
languages.  But we believe that the crux of the problem goes 
beyond that.  Intentional decoupling of paradigms and language 
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mechanisms appear to suggest a fear that opening the door to 
linguistic mechanisms will impose unnecessarily heavyweight 
manifestations of paradigms, potentially exposing the system to 
severe hidden run-time penalties.   Given that the majority of any 
mainstream operating system will retain its current incarnation in 
hand-optimized C code, we advocate incremental adoption of 
critical paradigms reunited with linguistic support, albeit with 
modern, customizable runtimes.      

It is important to note that, though current linguistic support has 
not gained favour in the systems community, adherence to higher-
level paradigms is evident in key services, such as file systems 
and networking.  Given that the systems community relies heavily 
on elegant C and Assembler used in crafty ways to ensure that the 
code is 100% optimized, the question becomes:  

Should system developers buy-in to language mechanisms 
when they can selectively apply the paradigms for free? 

We believe that some of the newest challenges in kernel 
development – such as scalability in both hardware 
(multiprocessor systems) and software (variability in feature-rich 
kernels) motivate the need for incremental adoption of critical 
paradigms coupled with linguistic support.  The costs of 
maintaining handcrafted code that only loosely leverages high-
level paradigms will finally outweigh the skepticism of adopting 
new mechanisms if we can adequately address 
performance/adoption concerns in a community that collectively 
feels that they have been there, done that, and moved on. 

1.1 A Blast from the Past:  Bell Bottoms and 
Fat Pointers? 
A direct descendent of C, Alef [9], is a block structured 
concurrent programming language designed for network 
application development under Plan 9 from Bell Labs (Lucent).  It 
supports abstract data types, parameterized (generic) ADTs and 
functions, error handling, parallel task synchronization, an 
explicit tail recursion statement, and fat (typed) pointers.  
Arguably, Alef brought together the best of many linguistic 
features to support systems programming, though it never appears 
to have thrived outside of Bell’s walls.  Since very little can be 
found on the runtime characteristics of Alef, perhaps the lesson 
learned from the past is more about the politics of programming 
languages, as opposed to an indication of a design disaster.  If the 
systems community were to start to look upon language support 
in a more favourable light, who knows – maybe the constructs of 
Alef could finally become fashionable and have their day in the 
sun? 



2. OSes FAIL TO SCALE 
Recent trends in processor hardware show us that processor speed 
is no longer increasing, but more processing cores are being 
added.  Intel’s Hyper-Threading is already commonplace, and 
both Intel and AMD seem to be pushing to make true dual core 
processors commonplace[1, 2].  It does indeed seem, two cores 
are better than one. More processors are becoming more common; 
however, mainstream operating systems are failing to scale in 
terms of both hardware and software support.  Hardware 
advancements are hidden behind an infrastructure that makes it 
difficult to unleash the power of true concurrency in multi-
processor systems.  Section 2.1 details the nature of this problem, 
and how an object-oriented approach could help to alleviate the 
inherent complexities of multi-processor environments.  Software 
advancements are equally disadvantaged – variants force the 
system to lurch awkwardly into a weakened future state, instead 
of smoothly evolving into an enlightened state.  Section 2.2 
overviews the problems with variant evolution, and how an 
aspect-oriented approach could aid developers in an unobtrusive 
way.  

2.1 True Concurrency 
The primary mechanism used to deal with the challenges of 
synchronization and safety (integrity and consistency) in 
multiprogrammed systems is hardware support for disabling 
interrupts.  Disabling interrupts makes the execution of a code 
path atomic, since interrupts are the only events that can cause 
current execution to be preempted.  

With the introduction of multi-processors, disabling interrupts 
alone is not sufficient to ensure safety.  The key feature of a 
multi-processor is the presence of multiple CPUs, concurrently 
executing instructions.  Rather than simply interleaving 
instructions in response to interrupts, multiple applications and 
system requests can be executing in a ``truly concurrent'' fashion.   

Shared Memory Multi-Processor (SMP) machines offer a 
programming model which is a natural extension of a typical 
uniprocessor; a single shared address space.  This has resulted in 
most general purpose multi-processors today being SMPs.  Given 
the familiar programming model, it was natural to develop 
operating system for SMPs as an incremental extension to 
uniprocessor OSes.  Although this approach was the natural 
course of development, research has shown it is not necessarily 
the best approach with respect to yielding high performance SMP 
OSes. 

The first and foremost challenge in porting a uniprocessor OS to 
an SMP is to ensure mutual exclusion.  The most common 
approach has been to introduce a synchronization primitive into 
the uniprocessor code paths, serializing execution while requiring 
minimal changes.  Initially, most solutions focused on 
correctness, that is to say that the techniques proposed ensured 
that only one process could be executing the critical section at a 
given time.  Solutions then progressed to take into account 
notions of forward progress, attempting to provide guarantees 
about how the processes attempting to execute a critical section 
would progress.  Later solutions also attempted to account for the 
performance of the primitives, ensure efficient execution on 
typical hardware platforms. 

Most modern operating systems have settled on the semantics of a 
lock for synchronization.  The implementation of locks to achieve 

mutual exclusion on general purpose SMP's typically 
synchronizes processors via shared variables.  A great deal of 
effort has been spent in studying the performance of SMP locking 
techniques.  Some of the aspects that were studied include: the 
effects of busy waiting and blocking when a lock is contended; 
the effects of how waiters on a lock are notified of released; the 
length of the critical sections associated with a lock; the use of 
multiple locks and the associated potential for deadlocks; the 
interaction of locks and scheduling; and the impact of hardware 
characteristics.  There are increased costs associated with read 
write sharing of variables due to the attendant rise in 
communications.   

Despite decades of research and development into SMP operating 
systems, achieving good scalability for general purpose 
workloads across a wide range of processors has remained 
elusive.  ``Sharing'' lies at the heart of the problem.  By its very 
nature, sharing introduces barriers to scalability. 

2.1.1 An Abstraction for Sharing: Clustered Objects 
Dealing with sharing is not a trivial task.  The fine-grain locking 
used in traditional systems results in complex and subtle locking 
protocols.  Also in traditional systems, adding per-processor data 
structures leads to obscure code paths that index per-processor 
data structures in ad-hoc manners.  Clustered Objects were 
developed as a model of partitioned objects to simplify the task of 
designing high-performance SMP systems software [3].  In the 
partitioned object model, an externally visible object is internally 
composed of a set of distributed Representative objects.  Each 
Representative object locally services requests, possibly 
collaborating with one or more other Representatives of the same 
Clustered Object.  Cooperatively, all the Representatives of the 
Clustered Object implement the complete functionality of the 
Clustered Object.  To the clients of the Clustered Object, the 
Clustered Object appears and behaves like a traditional object.   

Techniques for constructing SMP friendly OSes have been around 
for nearly two decades [?].  Both Microsoft and Linux system 
developers have gone out of their way to create scheduling data 
structures that avoid cache conflicts[?]. The distributed nature of 
Clustered Objects make them ideally suited for the design of 
multi-processor system software, which often requires a high 
degree of modularity and yet benefits from the sharing, 
replicating and partitioning of data on a per-resource (object) 
basis.  Clustered Objects are conceptually similar to design 
patterns such as façade [4]; however, they have been carefully 
constructed to avoid any shared front end, and are primarily used 
for achieving data distribution.  IBM Research’s K42 operating 
system[5] has taken advantage of these benefits with its Clustered 
Objects kernel facility to provide scaleable kernel data structures.  

2.1.2 Asking the Right Questions   
We offer some initial thoughts about a project to increase the 
scalability of the Linux operating system by introducing a 
Clustered Object facility.  This project is a systems project; 
however, it has been acknowledged that taking to heart a more 
holistic programming philosophy could improve the quality of the 
resulting system if performance is not compromised [3]. 

Clustered Objects require information from the underlying 
operating system to function efficiently [6].  Whether the 
Clustered Object runtime system best belongs in the Linux kernel 
is still an open question; but there have been clustered object 



systems imbedded in kernels before.  IBM Research’s K42 
operating system [5] is one example of this.  K42’s Clustered 
Object facility is the template from which our new Clustered 
Object facility will be derived.  

The K42 Clustered Object facility from which this project’s was 
derived already had some interesting traits.  Unlike most systems 
software it was written in C++, the facility makes use of a simple 
inheritance hierarchy to represent the variants of the core 
Clustered Object entities (representatives and miss handlers) [6].  
There are many different types of representatives (policies) to 
deal with different methods of sharing and different hardware 
topologies [4].  The K42 creators were able to leverage C++ 
inheritance to make these policies consistent and the code much 
more understandable and well organized. 

There are however some aspects of the system that do not nicely 
fit into the hierarchy. One example of this is memory allocation.  
There are some system rules that may be considered cross cutting 
concerns.  For example, some representatives are not allowed to 
have their constructors called, but rather a custom create( ) 
function is called to create a new instance of a Clustered Object 
representative [7].  This is for memory allocation reasons and is 
currently enforced with macros.  This style of crosscutting 
concern might be better implemented as an AspectC++ [10] 
aspect that deals with custom memory allocation than scattered 
through out the different representative’s code.   

2.1.3 A Case for Customization? 
Some areas of the Clustered Object facility have not had the same 
trickle in of object-oriented ideas.  For instance, the Clustered 
Object translation and dispatch routines that are responsible for 
performing runtime resolutions of Clustered Objects.  These 
routines use assembly code and vtable manipulation to operate in 
an efficient manner outside the rules of regular C++.  In a more 
“safe”  programming environment this might not even be possible.  

The use of C++ inheritance did help with the structure of the 
system; but the fact remains there was very little that could not 
have been done with regular C and some language parlor tricks.  
It may only have been necessary for a small C++ front end, and 
have the rest of the code in C.  This would have the obvious 
performance and control benefits; as well, it would ease the 
interface with the Linux kernel that is also written in C.  The 
performance gains may be tangible, but the losses in other areas 
may not be.  The C++ version has an inherent structure; the C 
version may lack some of this structure.  Macros may be applied 
where aspects might have; however, this process is done by hand 
and error prone.  All these will lead to less understandability and 
more bugs in the system. 

The questions become: was the extra structure worth it?  Will 
another paradigm help or even be able to do the things required? 

2.2 Managing Kernel Variants 
Developers of kernel variants often start with a mainline kernel 
from kernel.org and then apply patches for their application 
domain.  Many of these patches represent crosscutting concerns 
in that they do not fit within a single program module and are 
scattered throughout the kernel sources—easily affecting over a 
hundred files.  It requires nontrivial effort to maintain such a 
crosscutting patch, even across minor kernel upgrades due to the 
variability of the kernel proper.  It is exceedingly difficult to 
ensure correctness when integrating multiple variants.  To make 

matters worse, developers use simple code merging tools that are 
limited to textual substitution (e.g., diff and patch), with the result 
that patch maintenance is error prone and time consuming.   

2.2.1 An Abstraction for Crosscutting: Aspects 
Our position is that a better method is needed—beyond diff and 
patch—that reduces the amount of work it takes to maintain and 
review a crosscutting kernel extension in Linux.  We propose a 
semantic patch system called c4 for CrossCutting C Code [11].  
A semantic patch basically amounts to a set of transformation 
rules that precisely specify the conditions under which changes 
need to be made and the means for rewriting the affected code.  
Its compact yet human readable form lets a community of 
developers easily understand and discuss a crosscutting kernel 
extension, thereby helping reduce the time and effort required to 
evolve the kernel. 

2.2.2 Asking the Right Questions 
Aspects in the kernel are not a new idea, but what will it take to 
get the system community to buy-in to this controversial 
paradigm?  Much like object-orientation, runtime costs must be 
known in advance.  Similarly, the ability to customize the 
linguistic support, perhaps only providing a limited set of features 
relative to application level programming, is a must. 

2.2.3 A Case for a Customization? 
We aim to reduce developers’  exposure to c4 as much as possible. 
In particular, we are exploring how to support simple annotations 
of the form aspect(Name){ ...} , which can be added inline at the 
beginning or end of system functions and are then automatically 
extracted and converted into fully-featured aspects by the c4 
compiler. 

3. WHY BUY THE COW? 
Given these concrete ways in which traditional approaches are no 
longer sustainable, we now advocate an incremental solution that 
stands to fit within current practices – and perhaps political 
climate–-of  systems development.  Through incremental 
adoption, we believe this approach will achieve buy-in from the 
systems community, otherwise skeptical of the 
$fashionable_methodology_of_the_day. 

Primarily, we need to lay down our swords and think in 
nonpartisan terms about problems that are not met by current 
mechanisms, and what the important abstractions in the kernel 
really are.   

We believe there is compelling evidence to suggest that if 
clustered objects and crosscutting concerns were first class 
citizens in kernel code, complete with first class linguistic 
support, kernels would be better equipped to cope with both 
hardware and software evolution. 

Given that clustered objects have already been implemented in 
C++, this begs the question as to whether a module of this nature 
is viable and of interest to the community.  That is, could the 
current implementation of clustered objects be extracted from 
K42 and transplanted into a mainstream OS, and if so, what are 
the barriers to its acceptance?   

We believe that a first step in this direction is to get a more 
accurate accounting of maintenance and runtime costs.  If they are 
prohibitive, then a lighter-weight runtime can be customized 
using a tool such as xtc [12].  Such an approach could most 



flexibly support objects, aspects, and other necessary constructs.  
With kernels being restructured according to object-based 
paradigms, grafting this implementation into a mainstream 
operating system may be as easy as leveraging a polymorphic 
dispatch along the page fault path.  Given runtime costs can be 
shown to be acceptable, then we return to the original question: 

Should system developers buy-in to language mechanisms 
when they can selectively apply the paradigms for free? 

In an environment where selectively can mean inconsistently, 
incompletely, and inefficiently, and free can mean minimal 
microbenchmark performance penalty but maximal system 
compromise (for example, in terms of true concurrency) and 
maintenance fees, we believe the evidence we have gathered to 
date shows the answer is unequivocally, YES! 

Linguistic support, such as that provided by aspect-oriented 
programming, has shown to present an important foundation upon 
which more powerful programming tools can be bolted-on.   The 
fact that tools can leverage information explicitly declared in 
pointcuts and help developers visualize both internal invariants 
and external interaction comprehensively.  IVY [13] is one such 
example that suggests a new, better way of support 
metaprogramming (macros), but they provide a tool (macroscope) 
to support the translation of existing cpp macros to IVY macros. 

4. CONCLUSIONS 
If the gap between the Programming Language and Systems 
communities can be bridged, kernel code may one day scale to 
accommodate evolution in both hardware and software.  To date, 
the systems community focuses on using solutions that address a 
particular point of pain fully, while the former often focuses on a 
disjoint problem set.  Arguably, there is currently too much 
work and trust required by the systems community to adopt 
solutions from the languages community.  To bridge the gap, it is 
necessary for the languages community to build a set of tools that 
not only introduce a new paradigm, but also help in 
refactoring existing code from its current state to fit such new 
paradigms. 
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