
HEY… You got your Paradigm in
my Operating System!

Robert Grimm New York University

Jonathan Appavoo IBM Research

Marc E. Fiuczynski Princeton University

Chris Matthews, Owen Stampflee, Yvonne Coady
University of Victoria

“People like to live in denial; thinking that programming shouldn't be
this hard right? There must be an easier way, if only those pesky
developers followed $fashionable_methodology_of_the_day...”

-Pantelis Antoniou

"In fact, in Linux we did try C++ once already, back in 1992. It sucks.
Trust me – writing kernel code in C++ is a BLOODY STUPID IDEA...”

-Linus Torvalds

Should system developers buy-in to language mechanisms when they
can selectively apply the paradigms for free?

Alef for Plan9

• The Alef language evolved from C, and was used in
Bell Lab’s Plan9 OS

• Alef sported:
– Generics and regular ADTs
– Error handling
– Parallel task synchronization
– Explicit tail recursion
– Fat pointers

...it is clear that systems with multiple processors and multiple
memory units are needed to provide greater capacity. This is not to
say that fast processor units are undesirable, but that extreme system
complexity to enhance this single parameter among many appears
neither wise nor economic.

-Multics creators

Lots and lots of processors

• HEC is already using MP
– IBM supercomputer: 65,536 700mhz ppc chips

• MP is becoming more common at home too.
• Both AMD and Intel are releasing dual core

chips.

That pesky “true” concurrency
• On MP instructions are not interleaved, they

are truly parallel
• Before disabling interrupts was all we needed

to do before
• SMP allows the same natural programming

model of uniprocessor

One to many
• OSes need to ensure mutual exclusion
• Put locks in the uniprocessor code path
• First ensure correctness, then incrementally

remove the locks.
– Forward progress?
– Guarantees?
– SMP locking, busy waiting? Cache?

Clustered Objects

• A simple model of partitioned objects to simplify the
task of writing high performance SMP systems software

• Carefully constructed to take advantage of shared
memory and reduce cache conflicts

• Already used in K42
• Why not in Linux?!?
• Where do COs belong?

Asking the right questions

• Clustered Objects make use of a C++
inheritance hierarchy

• Some things do not nicely fit the hierarchy
though. Use AOP?

• Translation and Dispatch use assembly code
and manipulate the programs vtable

• Was all this necessary? Did we really gain that
much?

Managing Kernel Variants

• Process of creating a kernel variant:
1. Download a mainline kernel from kernel.org
2. Apply patches for specific domain

– Many of these patches represent cross cutting
concerns

– Patch developers use simple text matching
tools

– Diff
– Patch

An abstraction for crosscutting: Aspects

• We propose a semantic patching system for
kernel code called C4

• In C4, aspects structure and modularize
concerns that crosscut kernel code.

aspect {
pointcut setuid() :
execution(long sys_setreuid(..)) ||
execution(long sys_setresuid(..)) ||
execution(long sys_setuid(..));

after setuid() { ckrm_cb_uid(); }

pointcut setgid() :
execution(long sys_setregid(..)) ||
execution(long sys_setresgid(..)) ||
execution(long sys_setgid(..));

after setgid() { ckrm_cb_gid(); }
}

Should system developers buy-in to language mechanisms when they
can selectively apply the paradigms for free?

Why Buy The Cow?
(when you can drink the milk for free)

• Traditional approaches are not sustainable
• An incremental approach that fits within current

practices and political climate
• Through incremental adoption, we believe this

approach will achieve buy-in from the systems
community, otherwise skeptical of the
$fashionable_methodology_of_the_day.

• We must think about problems not met by our current
mechanisms, and what the important abstractions in
the kernel really are.

• There is compelling evidence that with COs
and crosscutting concerns as first class citizens
in kernels, kernels would be better equipped to
cope with software and hardware evolution.

• COs are implemented in C++, will this make it
viable and interesting to the community?

Should system developers buy-in to language mechanisms when they
can selectively apply the paradigms for free?

We say Yes!

But what are the barriers to acceptance?

Steps towards acceptance

• Accurate accounting of runtime and
maintenance costs.

• Linguistic support
– AOP?
– IVY for metaprogramming?

• Refactoring for current code?
– IVY macroscope?

C’est Fini

?

