
TRANSCLOUD:
Design Considerations for a High-Performance Cloud Architecture Across

Multiple Administrative Domains

Andy C. Bavier, Marco Yuen Jessica Blaine, Rick McGeer, Alvin Au Young
Princeton University, Princeton, NJ, HP Labs, Palo Alto, CA

acb@cs.princeton.edu, marcoy@gmail.com jessica-ann.blaine@hp.com, rick.mcgeer@hp.com,
alvin.auyoung@hp.com

Yvonne Coady, Chris Matthews, Chris
Pearson

Alex Snoeren Joe Mambretti

University of Victoria, Victoria, BC, Canada
ycoady@cs.uvic.ca, cmatthews@cs.uvic.ca,

pearson@cs.uvic.ca

University of California, San Diego
snoeren@cs.ucsd.edu

Northwestern University
j-mambretti@northwestern.edu

Keywords: Distributed query infrastructures; federation across cloud domains; advanced network architecture

Abstract: In this position paper, we consider architectures of distributed interconnected clouds across geographically
distributed, independently-administered storage and computation clusters. We consider two problems:
federation of access across heterogeneous administrative domains, and computation jobs run over the wide
area and heterogeneous data sets. We argue that a single, flexible architecture, analogous to the TCP/IP
stack for networking, is sufficient to support these jobs, and outline its major elements. As with the
networking stack, many elements are in place today to build an initial version of this architecture over
existing facilities. With the sponsorship of the US National Science Foundation GENI project and the
cooperation of the EU FIRE project, we are building an initial implementation, the TransCloud. We
describe our initial results.

1 INTRODUCTION

The dramatic trend of the first decade of the 21st
century in the information technology industry was
the emergence of society-scale systems: online
services such as Google, eBay, iTunes, Yahoo!,
Twitter, and Facebook that routinely served millions
of simultaneously-connected users. These systems
gave rise to entirely new programming models and
systems problems: management of the data center as
a single, unified, “warehouse-scale” computer, each
of which had more raw computing power than
existed on the planet as late as 1990; programming
models for loosely-coupled, data-intensive parallel
operations (“data-intensive supercomputing”), most
concretely realized in the MapReduce architecture
from Google and its open-source cousin, Hadoop.
vast, highly-efficient distributed data stores such as
PNUTS and Cassandra; the re-emergence of
virtualization of time, space, and computing, to
permit services to migrate instantly around the globe

and radically new notions in networking to support
the new programming and management models.

As revolutionary as the last decade has been, the
coming decade promises a far more profound
transformation: the twin emergence of the
Computation Cloud and the Internet of Things. For
all of its power and promise, the Cloud today is little
more than a massive, well-indexed repository of
text, videos, photos, and music, and a vast, universal
transaction engine. The Cloud has merely
automated and made vastly more efficient traditional
human communications and commerce. Over the
next decade, widespread availability of massive
computation – the Computation Cloud -- will give
to everyone the ability not only to look up what
someone knows, but to discover things that no one
knows.

Paired with the Computation Cloud is the
Internet of Things – a world where every object
houses a computer, sensor or sensors, and a
connection to the network. The applications range

from the trivial to the profound; milk that senses
when it’s going bad and tells its owner to drink it up,
and buy more; automobiles that drive themselves
and automatically (in coordination with other
vehicles on the road, and a network of smart
highways) avoid traffic jams; homes that pre-cool
themselves when power is cheap and plentiful and
turn off air conditioning when it is dear; smoke
alarms that can tell the difference between a real fire
and a ruined dinner, and call the firefighters for the
former; intelligent buildings that vector people to a
safe escape route in the event of an emergency; fine-
grained climate sensors that can predict severe
weather and evacuate people before the storm hits;
and many more.

Nascent signs of the Internet of Things are
already emerging. An American automobile has
tens of operator-visible sensors, and they already
operate the automobile in some ways better than the
driver can; anti-lock brakes are a classic example.
The RFID tags used to automatically pay tolls on
many American highway systems are used to trace
traffic speeds on major freeways. And the autodoc,
long a science fiction dream, is already emerging.
This year, the NHS rolled out a urine test kit that
transmitted results through a user’s cell phone.

The computation cloud is tightly coupled to the
Internet of things. The deployed sensors will range
in capacity and bandwidth from a few bytes
transmitted every few seconds to every few hours.
 Together, they will generate vast quantities of
information; zettabytes and beyond. Extracting
information from all of that data is a formidable
computational task, well beyond current
capabilities. Only a vast new computational
infrastructure will suffice to process all that data.
The challenges are vast:

• Computational infrastructure. Reduction
of the data requires a flexible, universal
programming interface. Most data will
need to be reduced at or near the point of
collection; the sheer volume of data and
real-time requirements ensure that.
 Therefore, an open, standard, and
sufficiently powerful computational
infrastructure – an arm of the
computational cloud – will need to be
proximate to any collection of sensors.

• Security. New, robust, and secure
protocols will be needed to access and
manipulate the Internet of Things. To date,
the notorious lack of security in cyberspace
has been of limited consequence; while
there were large consequences in the real
world, they were indirect, typically
requiring a separate physical transaction for

real-world effects. The Internet of Things
will enable direct manipulation of the
physical world.

• Data management. The Internet of Things
envisions a widely-distributed set of
sensors, data consumers, and fusion of
information from many disparate,
distributed sources. In-situ reduction of
data at the source on a per-query basis,
coordination of widely distributed queries,
and a wide variety of data access
mechanisms (“data blades” in the parlance)
will be required, including new distributed
computation mechanisms. Some early
innovations are already present:
MapReduce and Hadoop in the data center,
and Sector and Sphere in the distributed
environment. But these are just the
beginning. We can anticipate the Internet
of Things will required the adaptation of
many different data management and query
mechanisms, from distributed monitoring
systems (S3, Ganglia, PsePR) to sensor net
systems (TinyDB), to distributed
information systems (SWORD)

• Networking. Efficiently connecting the
Internet of Things and the Computational
Cloud will require new networking stacks
and protocols, both wired and wireless	

• Networks must be adaptive in the face of
changing conditions, using one of a number
of radio frequencies and choosing routing
on an adaptive basis.

In this paper, we focus on three problems:
• Ensuring that Computation Cloud users can

run computation jobs wherever they have
access, as simply and transparently as they
now download files from multiple
computers across the web	

• Ensuring that execution of remote queries
is done efficiently and safely for both
remote user and data host	

• Designing a simple, efficient, network-
aware architecture for queries over
geographically-distributed heterogeneous
data.	

2 SCALABLE LIGHTWEIGHT
FEDERATION

The computation cloud offers individuals, small
companies, and researchers the ability to develop,

test and deploy Internet-scale services easily and at
low cost. However, many of these services require
the use of multiple facilities, or users wish to
transparently move their services across multiple
facilities. This gives rise to the desire to federate
facilities. In this section, we view facility
federation not as a set of agreements between
federated facilities, but rather as a set of services to
developers and facilities. This approach scales easily
across heterogeneous facilities, operating in different
environments.

We motivate our discussion by considering a
somewhat simpler analogue: electronic document
exchange. Of course there are many problems that a
truly reliable, fully-functional document exchange
system must have: there must be a rich permission
and security system so that documents can be shared
only with selected remote users; a rich variety of
formats and clients must be supported; documents
should be unforgeable, so an ironclad identification
system must be in place; and so on.

Of course we have a ubiquitous electronic
document exchange system: the World Wide Web,
and even a casual user will recognize that the web
has none of these features. Rather, the web has a
bare-bones protocol to send a document from one
computer to another, and a simple format that can be
easily rendered by a wide variety of clients. Other
features are layered by third-party software on a per-
site basis as needed.

Our goal is to design a simple, ubiquitous system
which will permit users to easily run their programs
on a set of computers owned by a remote facility.
As with electronic document exchange, there are
many issues to be considered: acceptable use
policies; resource allocation; effects on other facility
users and, in a networked world, effects on the
network; global user ID’s and names; federated job
control; and, most importantly, agreements between
various hosting facilities as to what constitutes
acceptable use.

In the spirit of the web, we consider none of
these. Our goal is to design a system whereby users
can manage their jobs on facilities to which they
have independently obtained access. This involves
designing two central components.

1. An architecture and set of interfaces which
permit users to easily and rapidly upload,
configure, and run virtual machines

2. A service which manages a user’s access to
and use of facilities.

The first component is the analogue in our
system to a web server (more precisely, to the
specification of a webserver); the second, to a web
browser.

The architecture we choose is the Slice-Based
Facility Architecture (SFA) (Peterson et al, 2007). It
is an open, standardized set of facilities to manage
individual VMs and networks of VMs. In order to
demonstrate its utility for this purpose, we have
added support for the SFA into the Eucalyptus
cluster management system. These efforts have
demonstrated that the functionality in the SFA is a
superset of the functionality supported by
Eucalyptus; in particular, the SFA offers the ability
control slices, or sets of virtual machines, and the
topology of the network of virtual machines.

The key feature in the SFA required is the
delegate primitive, which permits one user (given by
a public ssh key) to assign its privileges to a
delegated ssh key.

The second component is easily added as a cloud
service which manages cloud services. The user
registers with the cloud service, and registers his
public key with the service itself, as well as the URI
of the services to which it is delegating permission.
The cloud service then uses the standard SFA calls
to instantiate slices, slivers, initialize and run VMs,
allocate resources, and control jobs.

3. SAFE EXECUTION OF
REMOTE JOBS AND QUERIES

At its most abstract level, a data management and
query infrastructure is an instantiation of a
distributed computing system of very wide
applicability: a wide-area distributed data
management, query, and computation system over
heterogeneous computing nodes and data types.
By “wide-area” here we mean nodes whose network
connectivity can be relatively low-bandwidth, in the
range of tens of kilobits/second and have internode
latencies in the range of tens of milliseconds and
beyond. Intermittent connectivity of some nodes is
the norm.

Data types can range from small collections of
simple data records to very large media files. For
the former, consider RFID readings of vehicle
positions, used to determine average traffic speeds
on freeways. A record will consist of an RFID tag, a
time, and a position, perhaps tens of bytes, and there
will be at most a couple of records per second. For
the latter, consider weather video data of the sort
generated by the CASA experiment.

This general problem: large, heterogeneous data,
spread over a distributed computing infrastructure
with varying connectivity and no common
administrative interface – is ubiquitous through the
natural, social, and engineering sciences. We are
designing and implementing a computing

infrastructure which addresses the distributed data
management and query problem, and deploy it in a
live service.

The service we will deploy is the State of the
Internet service, deployed over the TransCloud
infrastructure.

The basis of the query engine is a sandboxed
environment which permits the user to run programs
safely and efficiently at remote sites, and is based on
two fundamental architectural building blocks:

1. Restricted Python (Repy), a sandboxed
execution environment originally used in
the Seattle project

2. Google Native Client (NaCl), a sandboxed
native-code execution environment
distributed with the Firefox and Chrome
browsers, with x86 implementations.

The two central elements work together to
provide a secure, efficient execution environment
where side effects are tightly controlled. NaCl
offers an efficient execution environment in a secure
sandbox for computation-intensive code; safety is
guaranteed by severely restricting access to system
services. However, any real job requires more
system services than NaCl provides. In particular,
jobs in our context require access to network
connectivity and resources. NaCl relies on a trusted
service on the client in order to provide these
services. RePy is the mechanism we choose: it has
been widely deployed on a number of platforms, and
offers secure access to a restricted but adequate set
of system resources. Optionally, NaClRePy can run
inside a virtual machine for added isolation and
security. Our initial deployment of NaClRePy
inside the TransCloud environment offers this.

4. A WIDE-AREA QUERY
INFRASTRUCTURE

NaClRePy merely offers a safe execution
environment. Above that, we require a distributed
query/data reduction environment that is network-
aware, processes and reduces data optimally with
consideration of latency, bandwidth, and available
processing capacity. Such an environment must
support common data types, and must be extensible
to new data types on an on-demand basis.

There are two central themes of the data
processing environment. The first is a distribution
mechanism, and the second an extensible data
extraction and processing mechanism. For the first,
we turn to early attempts to provide services of this
form, notably Astrolabe, Hadoop, and Hadoop’s
wide-area cousins: Sector and Sphere. Hadoop has

achieved widespread use and popularity in a cluster
environment. However, extension to the wide area
is still an unresolved issue. There are two major
issues to be addressed:

1. Use of addressable subnets, easy in a data
center environment but challenging in the
wide area

2. Restrictions on bandwidth and large
latencies in the wide area.

Sector, Sphere, and Astrolabe have addressed
some of these issues. We will develop a hybrid
approach and report on it as a deliverable from this
research.

Extensible data mechanisms have been primarily
addressed with Data Blade (Brown, 2001) in a SQL
database context, and in object-oriented databases.
We will extend the Data Blades mechanism, using
an XML-based metadata template system to guide
optimized queries.

5. PRIVATE NETWORKING

In this paper, we have largely considered
computation over distributed, separately-
administered clusters. However, connectivity
between distributed, jointly-administered clusters
must be considered.

The fundamental issue in inter-site networking
over the Internet is that the basic Internet protocols
are designed to ensure fairness and decentralized,
orderly traffic management in the absence of global
information. The price is performance. In particular,
the TCP/IP protocol suite involves strong caps on
performance based on latency and loss. These can
be avoided (Bavier et al, 2006) (Brassil et al, 2009),
but only with information obtained from the
network. In the absence of such information,
guaranteed performance can only be obtained by
significant overprovisioning (McGeer et al, 2009).
Indeed, vanilla TCP/IP (Linux 2.6 kernel, default
parameters) can achieve a maximum throughput of
3.5 Mbit/sec on a coast-to-coast US (100 msec RTT)
link.

One solution is private point-to-point
connections between cluster instances. These
private networks offer significant freedom to cluster
operators. In particular, much higher performance
than the default TCP/IP performance is possible.
Indeed, the CHART system (Bavier et al, 2006;
Brassil et al, 2009) demonstrated line rate
performance over arbitrary latencies given explicit
line rate information. This can be obtained with
special-purpose equipment at each endpoint; it is
guaranteed on a private network.

Since mid-2010 we have been operating a cloud
over a private network between Northwestern
University, HP Labs in Palo Alto, CA, and the
University of California, San Diego using the CAVE
Wave on the National Lambda Rail and the Global
Lambda Integrated Facility. In directed throughput
tests we have measured direct TCP/IP connections
of over 5 Gb/sec using off-the-shelf endpoint and
switching equipment (Lee et al, 2010). We intend to
move this capability into production use in late
2011.

6. AN ARCHITECTURAL STACK

In this position paper, we have enumerated a
number of issues and our solutions to them. Some
(the Slice-based Facility Architecture, delegation,
TCP acceleration over private networks) we have
brought into being in our experimental cloud
application. The others, including our distributed
query architecture and secure, bare-metal execution
environment, are under intense development.

We have largely built our prototype system from
existing components: cluster managers such as
Eucalyptus and PlanetLab, distributed programming
environments (Hadoop, Sector/Sphere) and
distributed query interfaces (Pig, Astrolabe). This is
deliberate, both for ease of implementation and, far
more important, ease of adoption.

The Computation Cloud must be ubiquitous; in
order for it to be ubiquitous, it must be based on
standards, de jure if possible, de facto by necessity.
Every successful infrastructure has grown by
standardizing and formalizing existing practice. The
Web threw a hypertext skin over ftp; PlanetLab
canonized virtual machines on Linux; SMTP/POP
standardized sendmail. Our stack is no more than
codification of common practice:

• Virtualization: Xen VMs running over
and under Linux	

• Cluster and VM Management:
Eucalyptus augmented by the Slice
Facility Architecture toolset	

• Safe, high-performance programming
environment: Google NaCl using
Restricted Python (RePy)	

• Wide-area programming environments
and query systems: Hadoop, Pig,
Sector, Sphere, and Astrolabe	

• Delegation as a border primitive.	
Though different in application, this resembles the

classic wedding cake of the TCP/IP stack. We show
the notional architecture in figure 1.

Figure 1: Notional Architecture.

In the figure, it’s easy to see the layered services
provided, from virtual machine/bare metal allocation
to safe programming (alternately provided by
virtualization and safe/restricted environments) to
distributed query environments. Though our
implementation is not the ideal stack by any means,
exploration of this and similar stacks will yield a
distributed, usable cloud computing environment
analogous to the world wide web environment for
data transfer.
Not shown here, but implicit, is the delegation
primitive over the Slice Federation Architecture.
One may picture this as intercepting the pictured
stack at any level: it forms a ubiquitous
authorization primitive at each level of the stack.

7. RELATED WORK

We have clearly built on a large number of
existing pieces of work, from Xen to Eucalyptus and
PlanetLab, to NaCl and RePy, to Hadoop, Sector,
Sphere, and Pig. These are less related work than
inspirations and building blocks for TransCloud.

Most closely related to our research is the Orca
control framework of GENI, led by Jeff Chase and
Ilia Baldine of Duke University and the Renaissance
Computing Institute (RENCI). Orca similarly
incorporates a unified SFA/Eucalyptus architecture
and private networking over high-performance
networks. The Emulab/ProtoGENI project under the
late Jay LePreau and currently led by Robert Ricci
has led the way to allocation of virtual networks.

8. CONCLUSIONS

In this paper, we’ve discussed the requirements for
federated, transcontinental cloud architectures over
networks of varying connectivity, with edge nodes
and clusters of varying capability. We’ve designed a
prototype services and protocol stack for such
Clouds, and are constructing an initial three-site
implementation under the auspices of the GENI
project.

We stress this represents only a first attempt at
an infrastructure. Further, this field continues under
rapid development. Eucalyptus was simply our first
cloud manager of choice. Other recent entrants

include Tashi (Kosuch et al., 2009), Nimbus
(Keahey, 2008), and OpenStack
(http://www.openstack.org). These have different
strengths and weaknesses, and are optimized for
different envrionments. For example, Tashi is tuned
for big data. Cloud programming and query
infrastructures are also undergoing rapid
development, and we expect a plethora of
programming environments in the coming years.

Our interest is not in presenting the notional
architecture in figure 1 as the optimum, but in
identifying common layers across multiple
architectures and abstracting the interfaces as
common APIs. In this we take inspiration from the
network community, which has enjoyed enormous
success from standardizing protocol specifications
while retaining implementation freedom. We seek
the minimum required APIs to permit easy
interoperation. Our current standard is the Slice
Facility Architecture, with a delegate primitive. We
will continue to build on this and develop it in the
coming years, and expand the TransCloud facility.

ACKNOWLEDGEMENTS

We are indebted to our colleagues on the
GENI/FIRE projects for their inspiration,
conversations, and constant encouragement. We
have already mentioned Jeff Chase and Ilia Baldine,
whose parallel project has provided a constant
source of inspiration; Chip Elliot, Aaron Falk, Mark
Berman, Heidi Dempsey and Vic Thomas of the
GENI Project Office, for inspiration and support.
Justin Cappos of the University of Washington
developed Seattle and has been a constant source of
advice and counsel. Paul Muller of the University of
Kaiserslautern and the G-Lab project was invaluable
in bringing in early experimenters, and together with
Michael Zink of the University of Massachusetts
provided the data stores used in our pilot query
project. The SFA-based Eucalytpus was first used
for a Cloud transcoding service suggested and
inspired by Ericsson research. We are indebted to
Jim Chen and Fei Yeh of Northwestern, Eric Wu
and Narayan Krishnan of HP Research Engineering
and System Support for IT support, Dejan Milojicic
of the Open Cirrus project, and Tony Mackey of the
HP Strategic Innovation Office. This research has
been supported by the GENI Project office under
contract 1779B

REFERENCES
Bavier, A., et. al. 2004. “Operating system support for
planetary-scale network services”, Proceedings NSDI,
2004
Barham, P., et. al. 2003. “Xen and the art of
virtualization”, Proceedings SOSP, 2003

Peterson, L., et. al. 2007 “Slice-based facility
architecture”,
http://www.cs.princeton.edu/~llp/arch_abridged.pdf, 2007
Brett, P., et. al. 2004. “A Shared Global Event
Propagation System to Enable Next Generation
Distributed Services”, Proceedings WORLDS, 2004
Dean, J. and Ghernawat, S. 2004. “MapReduce:
Simplified Data Processing on Large Clusters”,
Proceedings of OSDI 2004, December, 2004.”
Borthakur, D., 2009. “The Hadoop Distributed File
System: Architecture and Design”,
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_desig
n.pdf
Cooper, B. F., et. al. 2010. “PNUTS: Yahoo!’s Hosted
Data Serving Platform”,
http://research.yahoo.com/files/pnuts.pdf
E. Evans. 2010. “Cassandra by Example”,
http://www.rackspacecloud.com/blog/2010/05/12/cassandr
a-by-example/
Paul Brown. 2001 Object Relational Database
Development - A Plumber's Guide, 2001, Prentice-Hall,
Upper Saddle River, NJ 07458
2010. “Mobile Phone Kit to Diagnose STDs”, The
Guardian,
http://www.guardian.co.uk/uk/2010/nov/05/new-test-
mobile-phones-diagnose-stds, 2010
Cooperative Atmospheric Sensing Apparatus (CAA),
2010. University of Massachusetts,
http://www.casa.umass.edu/
Gu, Y., Lu, L., Grossman, R., and Yoo, Y.. 2010.
“Processing Massived Sized Graphs using Sector/Sphere”
, Proceedings 3rd Workshop on Many-Task Computing on
Grids and Supercomputers, co-located with SC10, New
Orleans, LA, Nov. 15, 2010.
Gu, Y. and Grossman, R.. 2009. “Lessons Learned From a
Year's Worth of Benchmarks of Large Data Clouds,”
Proceedings 2nd Workshop on Many-Task Computing on
Grids and Supercomputers, co-located with SC09,
Portland, Oregon -- November 16th, 2009.
Gu, Y. and Grossman, R. 2009 “Sector and Sphere: The
Design and Implementation of a High Performance Data
Cloud”, Theme Issue of the Philosophical Transactions of
the Royal Society A: Crossing Boundaries: Computational
Science, E-Science and Global E-Infrastructure, 28 June
2009 vol. 367 no. 1897 2429-2445.
Gu, Y. and Grossman, R. 2008. “Exploring Data
Parallelism and Locality in Wide Area Networks”,
Proceedings of the Workshop on Many-task Computing on
Grids and Supercomputers (MTAGS), co-located with
SC08, Austin, TX. Nov. 2008.
Gu, Y. and Grossman, R. 2008. “Data Mining Using High
Performance Data Clouds: Experimental Studies Using
Sector and Sphere”, Proceedings SIGKDD 2008, Las
Vegas, NV, Aug. 2008.
511 Service, http://www.511.org
Van Renesse, R., Birman, K., and Vogels, W., 2003.
“Astrolabe: A robust and scalable technology for

distributed system monitoring, management, and data
mining”, ACM Transactions on Computer Systems, May,
2003
Cappos, J., Dadgar, A., Rasley, J., Samuel, J.,
IBeschastnikh, I., Barsan, C. , Krishnamurthy, A., and
Anderson, T. 2010. "Retaining Sandbox Containment
Despite Bugs in Privileged Memory-Safe Code."
Conference on Computer and Communications Security
(CCS '10). Chicago, IL, 2010.
Cappos, J., Beschastnikh, I., Krishnamurthy, A., and
Anderson. T. 2009. “Seattle: A Platform for Educational
Cloud Computing." SIGCSE '09.
Yee, B., Sehr, D., Dardyk, G., Chen, B., Muth, R.,
Ormandy, T., Okasaka, T. Narula, N., and Fullagar, N.
2009. “Native Client: A Sandbox for Portable, Untrusted
x86 Native Code”, IEEE Symposium on Security and
Privacy (Oakland'09), 2009.
Matthews, C., Cappos, J.,, Coady, Y., Hartman, J., Jacky,
J., and McGeer, R. 2010. “NanoXen : Better Systems
Through Rigorous Containment and Active Modeling”,
OSDI 2010 (Poster).
Yalagandula, P., Sharma, P., Banerjee, S., Lee, S-J., and
Sujoy Basu, S. 2006.“S3: A Scalable Sensing Service for
Monitoring Large Networked Systems”, Proceedings of
ACM INM 2006(in conjunction with Sigcomm 2006), Pisa,
Italy, September 2006.
The Neptune Ocean Observatory,
http://www.neptunecanada.ca
Madden, S., Franklin, M. J., Hellerstein, J. M., and
Hong, W. 2005. “TinyDB: An Acqusitional Query
Processing System for Sensor Networks” . ACM TODS,
2005.
Oppenheimer, D., et al., 2004. “Distributed Resource
Discovery on PlanetLab with SWORD”, Proceedings
WORLDS, 2004.
Massie, M. et. al. “The Ganglia Distributed Monitoring
System: Design, Implementation And Experience”,
Parallel Computing, 2003.
Apache Project. 2010. Pig, http://pig.apache.org
Bavier, A., et al. 2006. “Increasing TCP Throughput with
an Enhanced Internet Control Plane, Proceedings
MILCOMM 2006
Brassil J., et. al, The CHART System: A High-
Performance, Fair Transport Architecture Based on
Explicit-Rate Signaling, ACM SIGOPS Review, February,
2009
R. McGeer, B.L. Mark, J. Brassil, P. Sharma, P.
Yalagandula, S. Schwab, and S. Zhang, 2009. "The Case
for Service Overlays," Proc. 18th IEEE Int. Conf. on
Computer Communications and Networks (ICCCN'09),
San Francisco, CA, Aug. 2009.
Lee, J., Sharma, P., Tourrilhes, J., McGeer, R., Brassil, J.,
and Bavier, A. 2010. “Network Integrated Transparent
TCP Accelerator”, Proceedings AINA 2010, May 2010
Nurmi, D. et al. 2009. “The Eucalyptus Open-Source
Cloud-Computing System”, CCGRID '09, 2009

Kosuch, M., et al. 2009. "Tashi: Location-aware Cluster
Management", First Workshop on Automated Control for
Datacenters and Clouds (ACDC'09), June 2009
Keahey, K., Freeman, T. 2008. "Contextualization:
Providing One-Click Virtual Clusters", 2008 Fourth IEEE
International Conference on eScience, pp.301-308.
doi:10.1109/eScience.2008.82

