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Abstract: In this position paper, we consider architectures of distributed interconnected clouds across geographically 
distributed, independently-administered storage and computation clusters.  We consider two  problems: 
federation of  access across heterogeneous administrative domains,  and computation jobs run over the  wide 
area and heterogeneous data sets.  We argue that a single, flexible architecture, analogous to the TCP/IP 
stack for networking, is sufficient to support these jobs, and outline its major elements.  As with the 
networking stack, many elements are in place today to build an initial version of this architecture over 
existing facilities.  With the sponsorship of the US National Science Foundation GENI project and the 
cooperation of the EU FIRE project, we are building an initial implementation, the TransCloud.  We 
describe our initial results. 

1 INTRODUCTION 

The dramatic trend of the first decade of the 21st 
century in the information technology industry was 
the emergence of society-scale systems: online 
services such as Google, eBay, iTunes, Yahoo!, 
Twitter, and Facebook that routinely served millions 
of simultaneously-connected users.    These systems 
gave rise to entirely new programming models and 
systems problems: management of the data center as 
a single, unified, “warehouse-scale” computer, each 
of which had more raw computing power than 
existed on the planet as late as 1990; programming 
models for loosely-coupled, data-intensive parallel 
operations (“data-intensive supercomputing”), most 
concretely realized in the MapReduce architecture 
from Google and its  open-source cousin, Hadoop.  
vast, highly-efficient distributed data stores such as 
PNUTS and Cassandra; the re-emergence of 
virtualization of time, space, and computing, to 
permit services to migrate instantly around the globe 

and radically new notions in networking to  support 
the new programming and management models.   

As revolutionary as the last decade has been, the 
coming decade promises a far more profound 
transformation: the twin  emergence of the 
Computation Cloud and the Internet of Things.  For 
all of its power and promise, the Cloud today is little 
more than a massive, well-indexed repository of 
text, videos, photos, and music, and a vast, universal 
transaction engine.  The Cloud has merely 
automated and made vastly more efficient traditional 
human communications and commerce.  Over the 
next decade, widespread availability of massive 
computation – the Computation Cloud -- will  give 
to everyone the ability not only to look up what 
someone knows, but to discover things that no one 
knows.     

Paired with the Computation Cloud is the 
Internet of Things – a world where every object 
houses a computer, sensor or sensors, and a 
connection to the network.  The applications range 



 

from the trivial to the profound; milk that senses 
when it’s going bad and tells its owner to drink it up, 
and buy more; automobiles that drive themselves 
and automatically (in coordination with other 
vehicles on the road, and a network of smart 
highways) avoid traffic jams; homes that pre-cool 
themselves when power is cheap and plentiful and 
turn off air conditioning when it is dear;  smoke 
alarms that can tell the difference between a real fire 
and a ruined dinner, and call the firefighters for the 
former; intelligent buildings that vector people to a 
safe escape route in the event of an emergency; fine-
grained climate sensors that can predict severe 
weather and evacuate people before the storm hits; 
and many more.  

Nascent signs of the Internet of Things are 
already emerging.  An American automobile has 
tens of operator-visible sensors, and they already 
operate the automobile in some ways better than the 
driver can; anti-lock brakes are a classic example.   
The RFID tags used to automatically pay tolls on 
many American highway systems are used to trace 
traffic speeds on major freeways.  And the autodoc, 
long a science fiction dream, is already emerging.  
This year, the NHS rolled out a urine test kit that 
transmitted results through a user’s cell phone.   

The computation cloud is tightly coupled to the 
Internet of things.    The deployed sensors will range 
in capacity and bandwidth from a few bytes 
transmitted every few seconds to every few hours.  
 Together, they will generate vast quantities of 
information; zettabytes and beyond.  Extracting 
information from all of that data is a formidable 
computational task, well beyond current 
capabilities.  Only a vast new computational 
infrastructure will suffice to process all that data.  
The challenges are vast: 

• Computational infrastructure.    Reduction 
of the data requires a flexible, universal 
programming interface.  Most data will 
need to be reduced at or near the point of 
collection; the sheer volume of data and 
real-time requirements ensure that.  
 Therefore, an open, standard, and 
sufficiently powerful computational 
infrastructure – an arm of the 
computational cloud – will need to be 
proximate to any collection of sensors. 

• Security.  New, robust, and secure 
protocols will be needed to access and 
manipulate the Internet of Things.  To date, 
the notorious lack of security in cyberspace 
has been of limited consequence; while 
there were large consequences in the real 
world, they were indirect, typically 
requiring a separate physical transaction for 

real-world effects.  The Internet of Things 
will enable direct manipulation of the 
physical world. 

• Data management.  The Internet of Things 
envisions a widely-distributed set of 
sensors, data consumers, and fusion of 
information from many disparate, 
distributed sources.  In-situ reduction of 
data at the source on a per-query basis, 
coordination of widely distributed queries, 
and a wide variety of data access 
mechanisms (“data blades” in the parlance) 
will be required, including new distributed 
computation mechanisms.  Some early 
innovations are already present: 
MapReduce and Hadoop in the data center, 
and Sector and Sphere in the distributed 
environment.  But these are just the 
beginning.    We can anticipate the Internet 
of Things will required the adaptation of 
many different data management and query 
mechanisms, from distributed monitoring 
systems (S3, Ganglia, PsePR) to sensor net 
systems (TinyDB), to distributed 
information systems (SWORD) 

• Networking.  Efficiently connecting the 
Internet of Things and the Computational 
Cloud will require new networking stacks 
and protocols, both wired and wireless	  

• Networks must be adaptive in the face of 
changing conditions, using one of a number 
of radio frequencies and choosing routing 
on an adaptive basis. 

In this paper, we focus on three problems: 
• Ensuring that Computation Cloud users can 

run computation jobs wherever they have 
access, as simply and transparently as they 
now download files from multiple 
computers across the web	  

• Ensuring that execution of remote queries 
is done efficiently and safely for both 
remote user and data host	  

• Designing a simple, efficient, network-
aware architecture  for queries over 
geographically-distributed heterogeneous 
data.	  

2 SCALABLE LIGHTWEIGHT 
FEDERATION  

The computation cloud offers individuals, small 
companies, and researchers the ability to develop, 



 

test and deploy Internet-scale services easily and at 
low cost. However, many of these services require 
the use of multiple facilities, or users wish to 
transparently move their services across multiple 
facilities. This gives rise to the desire to federate 
facilities.    In this section, we view facility 
federation not as a set of agreements between 
federated facilities, but rather as a set of services to 
developers and facilities. This approach scales easily 
across heterogeneous facilities, operating in different 
environments.  

We motivate our discussion by considering a 
somewhat simpler analogue: electronic document 
exchange.  Of course there are many problems that a 
truly reliable, fully-functional document exchange 
system must have: there must be a rich permission 
and security system so that documents can be shared 
only with selected remote users; a rich variety of 
formats and clients must be supported; documents 
should be unforgeable, so an ironclad identification 
system must be in place; and so on.   

Of course we have a ubiquitous electronic 
document exchange system: the World Wide Web, 
and even a casual user will recognize that the web 
has none of these features.   Rather, the web has a 
bare-bones protocol to send a document from one 
computer to another, and a simple format that can be 
easily rendered by a wide variety of clients.  Other 
features are layered by third-party software on a per-
site basis as needed. 

Our goal is to design a simple, ubiquitous system 
which will permit users to easily run their programs 
on a set of computers owned by a remote facility.  
As with electronic document exchange, there are 
many issues to be considered: acceptable use 
policies; resource allocation; effects on other facility 
users and, in a networked world, effects on the 
network; global user ID’s and names;  federated job 
control; and, most importantly, agreements between 
various hosting facilities as to what constitutes 
acceptable use.   

In the spirit of the web, we consider none of  
these.  Our goal is to design a system whereby users 
can manage their jobs on facilities to which they 
have independently obtained access.  This involves 
designing two central components. 

1. An architecture and set of interfaces which 
permit users to easily and rapidly upload, 
configure, and run virtual machines 

2. A service which manages a user’s access to 
and use of facilities. 

The first component is the analogue in our 
system to a web server (more precisely, to the 
specification of a webserver); the second, to a web 
browser. 

The architecture we choose is the Slice-Based 
Facility Architecture (SFA) (Peterson et al, 2007).  It 
is an open, standardized set of facilities to manage 
individual VMs and networks of VMs.  In order to 
demonstrate its utility for this purpose, we have 
added support for the SFA into the Eucalyptus 
cluster management system.  These efforts have 
demonstrated that the functionality in the SFA is a 
superset of the functionality supported by 
Eucalyptus; in particular, the SFA offers the ability 
control slices, or sets of virtual machines,  and the 
topology of the network of virtual machines. 

The key feature in the SFA required is the 
delegate primitive, which permits one user (given by 
a public ssh key) to assign its privileges to a 
delegated ssh key.   

The second component is easily added as a cloud 
service which manages cloud services.  The user 
registers with the cloud service, and registers his 
public key with the service itself, as well as the URI 
of the services to which it is delegating permission.  
The cloud service then uses the standard SFA calls 
to instantiate slices, slivers, initialize and run VMs, 
allocate resources, and control jobs. 

3. SAFE EXECUTION OF 
REMOTE JOBS AND QUERIES 

At its most abstract level, a data management and 
query infrastructure is  an instantiation of a 
distributed computing system of very wide 
applicability: a wide-area distributed data 
management, query, and computation system over 
heterogeneous computing nodes and data types.     
By “wide-area” here we mean nodes whose network 
connectivity can be relatively low-bandwidth, in the 
range of tens of kilobits/second and have internode 
latencies in the range of tens of milliseconds and 
beyond.  Intermittent connectivity of some nodes is 
the norm.  

Data types can range from small collections of 
simple data records to very large media files.   For 
the former, consider RFID readings of vehicle 
positions, used to determine average traffic speeds 
on freeways.  A record will consist of an RFID tag, a 
time, and a position, perhaps tens of bytes, and there 
will be at most a couple of records per second.  For 
the latter, consider weather video data of the sort 
generated by the CASA experiment. 

This general problem: large, heterogeneous data, 
spread over a distributed computing infrastructure 
with varying connectivity and no common 
administrative interface – is ubiquitous through the 
natural, social, and engineering sciences. We  are  
designing and implementing a computing 



 

infrastructure which addresses the distributed data 
management and query problem, and deploy it in a 
live service. 

The service we will deploy is the State of the 
Internet service, deployed over the TransCloud 
infrastructure.    

The basis of the query engine is a sandboxed 
environment which permits the user to run programs 
safely and efficiently at remote sites, and is based on 
two fundamental architectural building blocks: 

1. Restricted Python (Repy), a sandboxed 
execution environment originally used in 
the Seattle project 

2. Google Native Client (NaCl), a sandboxed 
native-code execution environment 
distributed with the Firefox and Chrome 
browsers, with x86 implementations. 

The two central elements work together to 
provide  a secure, efficient execution environment 
where side effects are tightly controlled.  NaCl 
offers an efficient execution environment in a secure 
sandbox for computation-intensive code; safety is 
guaranteed by severely restricting access to system 
services.  However, any real job requires more 
system services than NaCl provides.  In particular,  
jobs in our context require access to network 
connectivity and resources.  NaCl relies on a trusted 
service on the client in order to provide these 
services.   RePy is the mechanism we choose: it has 
been widely deployed on a number of platforms, and 
offers  secure access to a restricted but adequate set 
of system resources.  Optionally, NaClRePy  can run 
inside a virtual machine for added isolation and 
security.  Our initial deployment of NaClRePy 
inside the TransCloud environment offers this. 

4. A WIDE-AREA QUERY 
INFRASTRUCTURE 

NaClRePy merely offers a safe execution 
environment.  Above that, we require a distributed 
query/data reduction environment that is network-
aware, processes and reduces data optimally with 
consideration of latency, bandwidth, and available 
processing capacity.  Such an environment must 
support common data types, and must be extensible 
to new data types on an on-demand basis.   

There are two central themes of the data 
processing environment.  The first is a distribution 
mechanism, and the second an extensible data 
extraction and processing mechanism.  For the first, 
we turn to early attempts to provide services of this 
form, notably Astrolabe, Hadoop, and Hadoop’s 
wide-area cousins: Sector and Sphere.  Hadoop has 

achieved widespread use and popularity in a cluster 
environment.  However, extension to the wide area 
is still an unresolved issue.  There are two  major 
issues to be addressed: 

1. Use of addressable subnets, easy in a data 
center environment but challenging in the 
wide area 

2. Restrictions on bandwidth and large 
latencies in the wide area. 

Sector, Sphere, and Astrolabe have addressed 
some of these issues.  We will develop a hybrid 
approach and report on it as a deliverable from this 
research. 

Extensible data mechanisms have been primarily 
addressed with Data Blade (Brown, 2001) in a SQL 
database context, and in object-oriented databases.  
We will extend the Data Blades mechanism, using 
an XML-based metadata template system to guide 
optimized queries. 

5. PRIVATE NETWORKING 

In this paper, we have largely considered 
computation over distributed, separately-
administered clusters.  However, connectivity 
between distributed, jointly-administered clusters 
must be considered.   

The fundamental issue in inter-site networking 
over the Internet is that the basic Internet protocols 
are designed to ensure fairness and decentralized, 
orderly traffic management in the absence of global 
information. The price is performance.  In particular, 
the TCP/IP protocol suite involves strong caps on 
performance based on latency and loss.  These can 
be avoided (Bavier et al, 2006) (Brassil et al, 2009), 
but only with information obtained from the 
network. In the absence of such information, 
guaranteed performance can only be obtained by 
significant overprovisioning (McGeer et al, 2009).  
Indeed, vanilla TCP/IP (Linux 2.6 kernel, default 
parameters) can achieve a maximum throughput of 
3.5 Mbit/sec on a coast-to-coast US (100 msec RTT) 
link. 

One solution is private point-to-point 
connections between cluster instances.   These 
private networks offer significant freedom to cluster 
operators.  In particular, much higher performance 
than the default TCP/IP performance is possible.  
Indeed, the CHART system (Bavier et al, 2006; 
Brassil et al, 2009) demonstrated line rate 
performance over arbitrary latencies given explicit 
line rate information.  This can be obtained with 
special-purpose equipment at each endpoint; it is 
guaranteed on a private network. 



 

Since mid-2010 we have been operating a cloud 
over a private network between Northwestern 
University, HP Labs in Palo Alto, CA, and the 
University of California, San Diego using the CAVE 
Wave on the National Lambda Rail and the Global 
Lambda Integrated Facility.  In directed throughput 
tests we have measured direct TCP/IP  connections 
of over 5 Gb/sec using off-the-shelf endpoint and 
switching equipment (Lee et al, 2010).  We intend to 
move this capability into production use in late 
2011. 

6. AN ARCHITECTURAL STACK 

In this position paper, we have enumerated a 
number of issues and our solutions to them.  Some 
(the Slice-based Facility Architecture, delegation, 
TCP acceleration over private networks) we have 
brought into being in our experimental cloud 
application.   The others, including our distributed 
query architecture and secure, bare-metal execution 
environment, are under intense development. 

We have largely built our prototype system from 
existing components: cluster managers such as 
Eucalyptus and PlanetLab, distributed programming 
environments (Hadoop, Sector/Sphere) and 
distributed query interfaces (Pig, Astrolabe).  This is 
deliberate, both for ease of implementation and, far 
more important, ease of adoption. 

The Computation Cloud must be ubiquitous; in 
order for it to be ubiquitous, it must be based on 
standards, de jure if possible, de facto by necessity.  
Every successful infrastructure has grown by 
standardizing and formalizing existing practice.  The 
Web threw a hypertext skin over ftp;  PlanetLab 
canonized virtual machines on Linux; SMTP/POP 
standardized sendmail.  Our stack is no more than 
codification of common practice: 

• Virtualization: Xen VMs running over 
and under Linux	  

• Cluster and VM Management: 
Eucalyptus augmented by the Slice 
Facility Architecture toolset	  

• Safe, high-performance programming 
environment: Google NaCl using 
Restricted Python (RePy)	  

• Wide-area programming environments 
and query systems: Hadoop, Pig, 
Sector, Sphere, and Astrolabe	  

• Delegation as a border primitive.	  
Though different in application, this resembles the 

classic wedding cake of the TCP/IP stack.  We show 
the notional architecture in figure 1. 
 

Figure 1: Notional Architecture.  
 

In the figure, it’s easy to see the layered services 
provided, from virtual machine/bare metal allocation 
to safe programming (alternately provided by 
virtualization and safe/restricted environments) to 
distributed query environments.  Though our 
implementation is not the ideal stack by any means, 
exploration of this and similar stacks will yield a 
distributed, usable cloud computing environment 
analogous to the world wide web environment for 
data transfer. 
Not shown here, but implicit, is the delegation 
primitive over the Slice Federation Architecture.  
One may picture this as intercepting the pictured 
stack at any level: it forms a ubiquitous 
authorization primitive at each level of the stack. 

 

7. RELATED WORK 

We have clearly built on a large number of 
existing pieces of work, from Xen to Eucalyptus and 
PlanetLab, to NaCl and RePy, to Hadoop, Sector, 
Sphere, and Pig.  These are less related work than 
inspirations and building blocks for TransCloud. 

Most closely related to our research is the Orca 
control framework of GENI, led by Jeff Chase and 
Ilia Baldine of Duke University and the Renaissance 
Computing Institute (RENCI).  Orca similarly 
incorporates a unified SFA/Eucalyptus architecture 
and private networking over high-performance 
networks.  The Emulab/ProtoGENI project under the 
late Jay LePreau and currently led by Robert Ricci 
has led the way to allocation of virtual networks. 

8. CONCLUSIONS 

In this paper, we’ve discussed the requirements for 
federated, transcontinental cloud architectures over 
networks of varying connectivity, with edge nodes 
and clusters of varying capability.  We’ve designed a 
prototype  services  and protocol stack for  such 
Clouds, and are constructing an initial three-site 
implementation under the auspices of the GENI 
project. 

We stress this represents only a first attempt at 
an infrastructure.  Further, this field continues under 
rapid development.  Eucalyptus was simply our first 
cloud manager of choice.  Other recent entrants 



 

include Tashi (Kosuch et al., 2009), Nimbus 
(Keahey, 2008), and OpenStack 
(http://www.openstack.org). These have different 
strengths and weaknesses, and are optimized for 
different envrionments.  For example, Tashi is tuned 
for big data.   Cloud programming and query 
infrastructures are also undergoing rapid 
development, and we expect a plethora of 
programming environments in the coming years. 

Our interest is not in presenting the notional 
architecture in figure 1 as the optimum, but in 
identifying common layers across multiple 
architectures and abstracting the interfaces as 
common APIs.  In this we take inspiration from the 
network community, which has enjoyed enormous 
success from standardizing protocol specifications 
while retaining implementation freedom.  We seek 
the minimum required APIs to permit easy 
interoperation.  Our current standard is the Slice 
Facility Architecture, with a delegate primitive.  We 
will continue to build on this and develop it in the 
coming years, and expand  the TransCloud facility. 

 
ACKNOWLEDGEMENTS 
 
We are indebted to our colleagues on the 
GENI/FIRE projects for their inspiration, 
conversations, and constant encouragement.  We 
have already mentioned Jeff Chase and Ilia Baldine, 
whose parallel project has provided a constant 
source of inspiration; Chip Elliot, Aaron Falk, Mark 
Berman, Heidi Dempsey and Vic Thomas of the 
GENI Project Office, for inspiration and support.  
Justin Cappos of the University of Washington 
developed Seattle and has been a constant source of 
advice and counsel.  Paul Muller of the University of 
Kaiserslautern and the G-Lab project was invaluable 
in bringing in early experimenters, and together with 
Michael Zink of the University of Massachusetts 
provided the data stores used in our pilot query 
project.  The SFA-based Eucalytpus was first used 
for a Cloud transcoding service suggested and 
inspired by Ericsson research.  We are indebted to 
Jim Chen and Fei Yeh of Northwestern,  Eric Wu 
and Narayan Krishnan of HP Research Engineering 
and System Support for IT support, Dejan Milojicic 
of the Open Cirrus project, and Tony Mackey of the  
HP Strategic Innovation Office.  This research has 
been supported by the GENI Project office under 
contract 1779B 

 
REFERENCES 
Bavier, A., et. al.  2004. “Operating system support for 
planetary-scale network services”, Proceedings NSDI, 
2004 
Barham, P., et. al. 2003. “Xen and the art of 
virtualization”, Proceedings SOSP,  2003 

Peterson, L., et. al. 2007 “Slice-based facility 
architecture”,  
http://www.cs.princeton.edu/~llp/arch_abridged.pdf, 2007 
Brett, P., et. al.  2004. “A Shared Global Event 
Propagation System to Enable Next Generation 
Distributed Services”, Proceedings WORLDS, 2004 
Dean, J. and Ghernawat, S. 2004. “MapReduce: 
Simplified Data Processing on Large Clusters”, 
Proceedings of OSDI 2004, December, 2004.” 
Borthakur, D., 2009. “The Hadoop Distributed File 
System: Architecture and Design”, 
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_desig
n.pdf 
Cooper, B. F., et. al. 2010. “PNUTS: Yahoo!’s Hosted 
Data Serving Platform”, 
http://research.yahoo.com/files/pnuts.pdf 
E. Evans. 2010. “Cassandra by Example”, 
http://www.rackspacecloud.com/blog/2010/05/12/cassandr
a-by-example/ 
Paul Brown. 2001 Object Relational Database 
Development - A Plumber's Guide, 2001, Prentice-Hall, 
Upper Saddle River, NJ 07458 
2010. “Mobile Phone Kit to Diagnose STDs”, The 
Guardian, 
http://www.guardian.co.uk/uk/2010/nov/05/new-test-
mobile-phones-diagnose-stds, 2010 
Cooperative Atmospheric Sensing Apparatus (CAA), 
2010. University of Massachusetts, 
http://www.casa.umass.edu/ 
Gu, Y., Lu, L., Grossman, R., and Yoo, Y..  2010. 
“Processing Massived Sized Graphs using Sector/Sphere” 
, Proceedings 3rd Workshop on Many-Task Computing on 
Grids and Supercomputers, co-located with SC10, New 
Orleans, LA, Nov. 15, 2010. 
Gu, Y. and Grossman, R.. 2009. “Lessons Learned From a 
Year's Worth of Benchmarks of Large Data Clouds,” 
Proceedings 2nd Workshop on Many-Task Computing on 
Grids and Supercomputers, co-located with SC09, 
Portland, Oregon -- November 16th, 2009. 
Gu, Y. and Grossman, R. 2009 “Sector and Sphere: The 
Design and Implementation of a High Performance Data 
Cloud”, Theme Issue of the Philosophical Transactions of 
the Royal Society A: Crossing Boundaries: Computational 
Science, E-Science and Global E-Infrastructure, 28 June 
2009 vol. 367 no. 1897 2429-2445. 
Gu, Y. and Grossman, R. 2008. “Exploring Data 
Parallelism and Locality in Wide Area Networks”, 
Proceedings of the Workshop on Many-task Computing on 
Grids and Supercomputers (MTAGS), co-located with 
SC08, Austin, TX. Nov. 2008. 
Gu, Y. and Grossman, R. 2008.  “Data Mining Using High 
Performance Data Clouds: Experimental Studies Using 
Sector and Sphere”, Proceedings SIGKDD 2008, Las 
Vegas, NV, Aug. 2008. 
511 Service, http://www.511.org 
Van Renesse, R., Birman, K., and Vogels, W., 2003. 
“Astrolabe: A robust and scalable technology for 



 

distributed system monitoring, management, and data 
mining”, ACM Transactions on Computer Systems, May, 
2003 
Cappos, J.,  Dadgar, A., Rasley, J., Samuel, J., 
IBeschastnikh, I., Barsan, C. , Krishnamurthy, A., and 
Anderson, T. 2010.  "Retaining Sandbox Containment 
Despite Bugs in Privileged Memory-Safe Code."     
Conference on Computer and Communications Security 
(CCS '10). Chicago, IL, 2010. 
Cappos, J., Beschastnikh, I., Krishnamurthy,  A., and 
Anderson. T. 2009. “Seattle: A Platform for Educational 
Cloud Computing."     SIGCSE '09. 
Yee, B., Sehr, D.,  Dardyk, G., Chen, B., Muth, R., 
Ormandy, T., Okasaka, T. Narula, N., and Fullagar,  N. 
2009.  “Native Client: A Sandbox for Portable, Untrusted 
x86 Native Code”, IEEE Symposium on Security and 
Privacy (Oakland'09), 2009. 
Matthews, C., Cappos, J.,, Coady, Y., Hartman, J., Jacky, 
J., and McGeer, R. 2010. “NanoXen : Better Systems 
Through Rigorous Containment and Active Modeling”, 
OSDI 2010 (Poster). 
Yalagandula, P., Sharma, P., Banerjee, S., Lee, S-J.,  and 
Sujoy Basu, S.  2006.“S3: A Scalable Sensing Service for 
Monitoring Large Networked Systems”, Proceedings of 
ACM INM 2006(in conjunction with Sigcomm 2006), Pisa, 
Italy, September 2006. 
The Neptune Ocean Observatory, 
http://www.neptunecanada.ca 
Madden, S.,  Franklin, M. J.,  Hellerstein, J. M.,  and 
Hong, W. 2005. “TinyDB: An Acqusitional Query 
Processing System for Sensor Networks” . ACM TODS, 
2005. 
Oppenheimer, D., et al., 2004. “Distributed Resource 
Discovery on PlanetLab with SWORD”,  Proceedings 
WORLDS, 2004. 
Massie, M. et. al. “The Ganglia Distributed Monitoring 
System: Design, Implementation And Experience”, 
Parallel Computing, 2003. 
Apache Project. 2010.  Pig, http://pig.apache.org 
Bavier, A., et al. 2006. “Increasing TCP Throughput with 
an Enhanced Internet Control Plane, Proceedings 
MILCOMM 2006 
Brassil J., et. al, The CHART System: A High-
Performance, Fair Transport Architecture Based on 
Explicit-Rate Signaling, ACM SIGOPS Review, February, 
2009 
R. McGeer, B.L. Mark, J. Brassil, P. Sharma, P. 
Yalagandula, S. Schwab, and S. Zhang, 2009. "The Case 
for Service Overlays," Proc. 18th IEEE Int. Conf. on 
Computer Communications and Networks (ICCCN'09), 
San Francisco, CA, Aug. 2009. 
Lee, J., Sharma, P., Tourrilhes, J., McGeer, R., Brassil, J., 
and Bavier, A. 2010.  “Network Integrated Transparent 
TCP Accelerator”, Proceedings AINA 2010, May 2010 
Nurmi, D. et al. 2009.  “The Eucalyptus Open-Source 
Cloud-Computing System”,  CCGRID '09, 2009 

Kosuch, M., et al. 2009. "Tashi: Location-aware Cluster 
Management", First Workshop on Automated Control for 
Datacenters and Clouds (ACDC'09), June 2009 
Keahey, K., Freeman, T. 2008. "Contextualization: 
Providing One-Click Virtual Clusters", 2008 Fourth IEEE 
International Conference on eScience, pp.301-308. 
doi:10.1109/eScience.2008.82 
 
 
 


