
Overcast:
Eclipsing High Profile Open
Source Initiatives
…seeding the clouds?

Chris Matthews, Stephen Neville,
Yvonne Coady, Jeff McAffer and Ian Bull

2

Web Server

Application Server

Database

a simple web services stack…

Classic

Non-Virtualized

3

VM

VMM OS

Web Server

Application Server

Database

Non-Virtualized

4

VMM

VM
OS

Web Server
Application Server

Database

VM
OS

Web Server
Application Server

Database

VM
OS

Web Server
Application Server

Database

How Virtualization helps

  Functionality and Utilization

  heterogeneity, hardware

  Security and Privacy

  assertions, “black box”

  Reliability and Robustness

  isolation, snap shoting

 Decomposition

 migration, conceptual model

5

Web Server

Application

Database

VMM

OS
 VM

OS
 VM

OS
 VM

Decomposition

… More of a good thing?
Further decompose into domains?

6

Web Server

Application Server

Database

VMM

OS
 VM

OS
 VM

OS
 VM

Road Map

  Today’s virtual appliances and
 the cloud

  Easybake appliances!

  Proposed approach

  why is Chris trapped in a basement in BC?

  Tools that might help

  CloudClipse = OSGi + P2 + Virtualization

  Overcast

  How we can build better software for the cloud?

  Software engineering challenge

7

Virtual Appliances

  Services prebuilt into VM
images

  Building monolithic VM
images is easy

  Amazon’s AMI

  rBuilder from rPath

 OpenQRM

  Convenient interfaces for
constructing!

Create an Appliance from your Application

“Plugins” in OpenQRM

Proposed Approach

 What if we tried to further decompose the system?

  Virtual Co-processors
  firewall
  encryption
  random number

generator
  TPMs

  Services
  logging
  time stamp
  inspection monitor

Principles for
decomposition…

13

Web Server

C4: The Cs system decompostion

•  Componentization
•  Composition
•  Communication
•  Control

To enable fine-grained components in a system.

14

Web Server

Componentization

 Disaggregate the elements of the system into components

 Modern day modularity?

 What will change in the system?

  These components benefit from the properties of virtualization

 Must trade off with the intrinsic costs
•  How big are they?
•  How are they packaged?

15

Composition
  Ideally we want dynamic programmatic composition of

domains

 We need mechanisms for
•  referencing other components
•  exploring component's metadata and interfaces
•  creating, updating, distributing them
•  destroying them
•  customization

•  …BUT who does the composition?
•  …AND how is the composition done?

16

Communication
  Communication should be as easy as IPC or a function call

  The system needs to provide
•  some plumbing between domains
•  naming and registration
•  interfaces to describe services and communication
•  defined communication semantics
•  security services

 Need secure, reliable, cross domain communication that is easy to
use

what are the communication semantics?

17

Control
  The system should be able to define policies and enforce them

with mechanisms
  controlling life-cycle
  monitoring resource usage

what mechanisms are needed to correctly control a
component?

where are these mechanisms controlled from?
where are the policies of a component defined?

18

So Why is Chris Locked in a Basement?

  As the decomposition becomes more fine-grained the attendant
costs of the decomposition increase in two ways

  Scalability

  Sustainability

 High burden of composition

  on the system resources…

  on the programmer…

19

Leveraging Existing Technology: OSGi

  Popular Java component model

  Provides services, naming,
versioning and lifecycle
management

 Dynamic service model maps to
distributed systems (R-OSGi)

  Eclipse Foundation provides
reference implementation
named Equinox

  Equinox powers the Eclipse IDE

20

P2: a provisioning platform

  A provisioning system for
OSGi applications

  In some ways similar to a
package management system

 Used in the Eclipse IDE
update mechanism

CloudClipse

  Google Summer of Code

  Eclipse plugin

  Combines the power of P2
and OSGi with virtualization

  Extends the P2 engine with
the tools to build VM images

22

CloudClipse

  CloudClipse extends the P2
installer to:

 Mount images

  Install RPMs

  Copy new files in

  Run commands in the image
with chroot

  Compact images

23

CloudClipse

  Basic Operation:

  P2 finds and downloads a
base image (to save time)

  Image is mounted

  RPMs are installed

  Config files are setup

  Passwords are set, ssh keys
are installed

  Your application is installed

24

25

Overcast: The Vision!

  Boot strapping!

  Create an image with P2 within it

 Dynamically construct the rest of the
software

YES WE CAN Leverage Current Component
Systems… we think!

 OSGi provides an interesting
component model for
MacroComponents and more
generally Cloud Service
Compositions

  R-OSGi shows dynamic
services could work as
distributed services

  Preexisting tool support for
OSGi

  Still lacking Communication
and Control systems

 ….This could allow us to build
and deploy better software for
the cloud!

27

Summary and Conclusions

 Want to tap into the software
engineering benefits of
components

  strongly isolated

  redundancy is easily
inserted into the system

  hot standbys are cheaper

 Overall a more robust secure
and scalable software system
of heterogeneous components

  Breaks the dependence on
large software stacks

 Match conceptual models!

  Challenges:

  Adoption

  Privacy

 Overheads

28

Chris: one day he’ll have a REAL Parrot!

Questions
www.christophermatthews.ca

