
Overcast:
Eclipsing High Profile Open
Source Initiatives
…seeding the clouds?

Chris Matthews, Stephen Neville,
Yvonne Coady, Jeff McAffer and Ian Bull

2

Web Server

Application Server

Database

a simple web services stack…

Classic

Non-Virtualized

3

VM

VMM OS

Web Server

Application Server

Database

Non-Virtualized

4

VMM

VM
OS

Web Server
Application Server

Database

VM
OS

Web Server
Application Server

Database

VM
OS

Web Server
Application Server

Database

How Virtualization helps

  Functionality and Utilization

  heterogeneity, hardware

  Security and Privacy

  assertions, “black box”

  Reliability and Robustness

  isolation, snap shoting

 Decomposition

 migration, conceptual model

5

Web Server

Application

Database

VMM

OS
 VM

OS
 VM

OS
 VM

Decomposition

… More of a good thing?
Further decompose into domains?

6

Web Server

Application Server

Database

VMM

OS
 VM

OS
 VM

OS
 VM

Road Map

  Today’s virtual appliances and
 the cloud

  Easybake appliances!

  Proposed approach

  why is Chris trapped in a basement in BC?

  Tools that might help

  CloudClipse = OSGi + P2 + Virtualization

  Overcast

  How we can build better software for the cloud?

  Software engineering challenge

7

Virtual Appliances

  Services prebuilt into VM
images

  Building monolithic VM
images is easy

  Amazon’s AMI

  rBuilder from rPath

 OpenQRM

  Convenient interfaces for
constructing!

Create an Appliance from your Application

“Plugins” in OpenQRM

Proposed Approach

 What if we tried to further decompose the system?

  Virtual Co-processors
  firewall
  encryption
  random number

generator
  TPMs

  Services
  logging
  time stamp
  inspection monitor

Principles for
decomposition…

13

Web Server

C4: The Cs system decompostion

•  Componentization
•  Composition
•  Communication
•  Control

To enable fine-grained components in a system.

14

Web Server

Componentization

 Disaggregate the elements of the system into components

 Modern day modularity?

 What will change in the system?

  These components benefit from the properties of virtualization

 Must trade off with the intrinsic costs
•  How big are they?
•  How are they packaged?

15

Composition
  Ideally we want dynamic programmatic composition of

domains

 We need mechanisms for
•  referencing other components
•  exploring component's metadata and interfaces
•  creating, updating, distributing them
•  destroying them
•  customization

•  …BUT who does the composition?
•  …AND how is the composition done?

16

Communication
  Communication should be as easy as IPC or a function call

  The system needs to provide
•  some plumbing between domains
•  naming and registration
•  interfaces to describe services and communication
•  defined communication semantics
•  security services

 Need secure, reliable, cross domain communication that is easy to
use

what are the communication semantics?

17

Control
  The system should be able to define policies and enforce them

with mechanisms
  controlling life-cycle
  monitoring resource usage

what mechanisms are needed to correctly control a
component?

where are these mechanisms controlled from?
where are the policies of a component defined?

18

So Why is Chris Locked in a Basement?

  As the decomposition becomes more fine-grained the attendant
costs of the decomposition increase in two ways

  Scalability

  Sustainability

 High burden of composition

  on the system resources…

  on the programmer…

19

Leveraging Existing Technology: OSGi

  Popular Java component model

  Provides services, naming,
versioning and lifecycle
management

 Dynamic service model maps to
distributed systems (R-OSGi)

  Eclipse Foundation provides
reference implementation
named Equinox

  Equinox powers the Eclipse IDE

20

P2: a provisioning platform

  A provisioning system for
OSGi applications

  In some ways similar to a
package management system

 Used in the Eclipse IDE
update mechanism

CloudClipse

  Google Summer of Code

  Eclipse plugin

  Combines the power of P2
and OSGi with virtualization

  Extends the P2 engine with
the tools to build VM images

22

CloudClipse

  CloudClipse extends the P2
installer to:

 Mount images

  Install RPMs

  Copy new files in

  Run commands in the image
with chroot

  Compact images

23

CloudClipse

  Basic Operation:

  P2 finds and downloads a
base image (to save time)

  Image is mounted

  RPMs are installed

  Config files are setup

  Passwords are set, ssh keys
are installed

  Your application is installed

24

25

Overcast: The Vision!

  Boot strapping!

  Create an image with P2 within it

 Dynamically construct the rest of the
software

YES WE CAN Leverage Current Component
Systems… we think!

 OSGi provides an interesting
component model for
MacroComponents and more
generally Cloud Service
Compositions

  R-OSGi shows dynamic
services could work as
distributed services

  Preexisting tool support for
OSGi

  Still lacking Communication
and Control systems

 ….This could allow us to build
and deploy better software for
the cloud!

27

Summary and Conclusions

 Want to tap into the software
engineering benefits of
components

  strongly isolated

  redundancy is easily
inserted into the system

  hot standbys are cheaper

 Overall a more robust secure
and scalable software system
of heterogeneous components

  Breaks the dependence on
large software stacks

 Match conceptual models!

  Challenges:

  Adoption

  Privacy

 Overheads

28

Chris: one day he’ll have a REAL Parrot!

Questions
www.christophermatthews.ca

