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ABSTRACT
Security is a constant sore spot in application development.
Applications now need structural support for better isola-
tion and security on a domain specific basis to stave off
the multitude of modern security vulnerabilities. Currently,
application developers have been relying upon cumbersome
workarounds to address these issues. We propose the design
and initial implementation details for Lind, a highly flex-
ible composition infrastructure that can be well-integrated
with modern application development processes and extends
traditional mechanisms like virtualization and software fault
isolation in a way that can be tailored according to an appli-
cation’s need. Lind does this by providing the structures and
services needed to build a virtual component model. Since
compositions of virtual components are different than cur-
rent software systems, building and using virtual component
models provides a new set of software engineering challenges
in composition and system construction. As a possible solu-
tion to many modern security problems, it is important to
understand how virtual component models can be evaluated,
to further both the user’s understanding of them, and future
research in this area. This paper proposes a design and im-
plementation strategy for components that run in isolation.
Then the paper presents an evaluation of the efficacy of this
approach in terms of performance, isolation, security and
composition provides insight into the possible advantages
and disadvantages of a virtual component model.

1. INTRODUCTION
At a conceptual level security problems are just a type of
software bug. One technique that has proven effective at
limiting the scope of both bugs and malware in the op-
erating systems area is system virtualization. Virtualiza-

tion restricts inter-VM communication to specific APIs (like
the network), allocates resources to VMs, and provides se-
curity and temporal isolation between running programs.
Virtualization has provided leverage within the security do-
main; however, current heavy-weight virtualization is not
suitable for use within an application. Some of these isola-
tion advantages can be realized using very fine-grained pro-
cesses and replacing intra-process procedure calls with inter-
process service interactions. However, because of the perfor-
mance and programmer burdens of doing so, we expect that
programmers will continue to write relatively large, unfac-
tored applications. For this reason, an analog to the virtual
machine that is suitable for use within a process is desirable.

A virtual component or virtual container is the intra-process
analog to the inter-process virtual machine. Conceptually,
this adds guarantees of protection and isolation to the popu-
lar software component architecture concept, which has such
concrete realizations as Java Beans[5] and OSGi[10]. One
might reasonably ask why component virtualization is nec-
essary. We note the following:

1. Executing programs are typically assemblages of com-
ponents (DLLs, SOs, etc) that are written by different
programmers, at different times, for different circum-
stances. Despite this, when they are combined into a
program, they all have the same authority.

2. Consumption of resources by a program component is
unrestricted, and access to shared state is only par-
tially controlled.

3. A component can and will block the remainder of the
program from executing while it is executing; there is
no provision for the independent monitoring and con-
trol of a sub-process sized component.

4. A collection of components need not be locked to one
physical machine, they could be moved dynamically,
or be distributed across several machines.

In sum, the intuitive model of a single program is a collec-
tion of tightly-coupled routines that execute until the job



is complete, then terminate. However, in today’s world of
persistent services, a program is more likely to run indefi-
nitely. Further, (1) above suggests that such programs are
assemblages of mutually opaque, and essentially untrusting,
components. This means that a program now looks less like
a batch job more like a collection of processes in a time-
sharing system; however, there is currently no equivalent of
an operating system to control this collection of components.

What is needed to construct this is isolation that is simulta-
neously low overhead and strong. One potential solution to
this problem is to isolate separate pieces of code in their own
system virtual machines. While this provides strong isola-
tion, it is far too heavyweight for practical use. Similarly,
one could extend isolation techniques like software fault iso-
lation (SFI) or object capability systems to have lightweight
isolation within a process. However, this would not provide
resource isolation or correctly separate out privileges. Our
design allows isolation that is simultaneously strong and low
overhead.

A critical feature in the functioning of secure, robust, re-
silient systems is robust, reliable, parallel computation. Un-
fortunately, reliable parallel processing within a single ad-
dress space has proven to be a challenging problem. The
most common abstraction in use today is threads: multiple
independent control threads and call stacks in a single pro-
cess. While these are quite lightweight, they have proven to
be a debugging and security challenge [11, 7].

The essence of the problem is that the behavior of a multi-
threaded program is no longer deterministic and solely de-
pendent on the program text. Rather, it is dependent on the
behavior of the program text and the implicit thread sched-
uler, whose behavior is generally completely unspecified.

These semantics are a veritable bug ranch, and a fertile nurs-
ery of security holes, including race conditions such as time
of check to time of use (TOCTTOU) bugs. Analysis of such
errors indicates that the fundamental problem underlying
multiple independent threads of control is false synchrony:
an implicit guarantee that the state of a remote thread is de-
termined, when in fact it is indeterminate. For example, in
a TOCTTOU bug, the fundamental assumption is that the
checked variable has not changed value between the time it is
checked and the time it is used. In Lind, all nondeterminism
is explicit; in particular, there is no implicit synchronization
between independent threads of control.

Of course, it is always possible for a sufficiently careful pro-
grammer to check the state of threads, lock only shared vari-
ables that are required, adopt a locking scheme that avoids
deadlocks (a system of hierarchical locks, for example, avoids
deadlock). In practice, this is not often enough done. An
analogy to typed languages is appropriate here. A suffi-
ciently careful programmer can avoid type errors in an dy-
namically language, by adopting a discipline that essentially
amounts to a program-specific type system. In practice, pro-
grammers don’t. In a model which imposes isolation bound-
aries at a component level, inter-component communication
becomes a key aspect of the system. Virtual Components
provide a structured inter-component communication mech-
anism with the following properties:

1. Virtual Components are guarded with specific permis-
sions. Access is enforced by the system to explicit
typed interfaces.

2. Virtual Components reliably communicate events asyn-
chronously. Asynchronity is a natural model for vir-
tual components, as VMs are run on separate cores in
multi-core machines. In the event synchronous com-
munication is needed, it can be built on asynchronous
primitives.

3. The system enforces memory isolation between Virtual
Components. There is no way for the virtual compo-
nent itself to break this isolation.

4. Virtual Components share no variables; shared vari-
ables would create a form of synchronous communica-
tion between virtual components.

This model is intended to encourage the developer to use
component level parallelism to produce the system’s paral-
lelism.

It will be noted that there are many similarities between Vir-
tual Components in the Lind system and Virtual Machines
in any standard virtualization environment such as Xen[1].
In particular, communication between virtual components
is explicit; virtual components are independently scheduled
and logically asynchronous; there is no possibility of state
interdependence between virtual components. An analysis
of the problems of multi-threaded programming indicates
that the fundamental problem is one of false synchrony: one
component presumes knowledge of another’s internal state,
in general by updating some shared variable. In Lind, the
state of a component is not exposed to external components,
except by explicit calls, with firm limits on expressed war-
ranties. In particular, shared state is only updated by ac-
cessor messages, and these give explicit feedback as to their
success, failure, and stateful warranty. This leads to the
essence of our model: virtual machines at the granularity of a
thread in a programming language. These components must
therefore be lightweight. In particular, creation of a virtual
component is similar in concept and implementation to ob-
ject instantiation in a Java-like language. Inter-component
communication involves only a few extra function calls and
so should be within a small incremental factor of function
call performance.

1.1 Inter-Component Programming Model
Though components themselves are not a new abstraction
in software development, we need to carefully consider how
to construct this programming model in the context of core
system infrastructure which previously has been more mono-
lithic and hardwired. The key feature of a component sys-
tem is the ability to customize and replace prepackaged com-
ponents without requiring changes to the rest of the system.
Psychologically however, this can leave system developers
feeling a lack of control. Ultimately, adoption will hinge on
our ability to mitigate this reaction through a programming
model and tool support that fits workflow practices of mod-
ern system developers. Specifically, we need to consider life
cycle management, naming, versioning, and lookup services,
and include mechanisms for customizing, packaging and de-
ploying components. Here we focus on some of the key issues



we must consider in terms of the root of communication costs
and complexity of composition strategies.

1.1.1 Communication
Inter-component communication will play an important role
in how scalable the system is. If communication overhead is
too high, it does not encourage the developers to decompose
their systems; but conversely, components are a granularity
of parallelism in the system, so a well decomposed system
naturally becomes parallelisable. The trade-off the devel-
opers face will be to balance latency between components,
versus the possible gains multiple components give. In terms
of communication latencies, we plan to carefully assess costs
we will incur with respect to the management of the Trans-
lation Lookaside Buffer (TLB) and cache coherency proto-
cols. Both TLB and CC protocols if not treated correctly
can slow a system by orders of magnitude. Early simulation
studies revealed the ability to mitigate costs of Translation
Lookaside Buffer (TLB) misses through better configuration
strategies [4]. More recent work on performance isolation
for VMs running on multicore architectures includes mech-
anisms for tagging the Translation Lookaside Buffer (TLB)
entries, partitioning this shared resource to improve perfor-
mance. Specifically, in [13] a combination of process and
VM specific tagging proved promising in terms of perfor-
mance isolation and Quality of Service (QoS) guarantees
for VMs. Another consideration in the context of multicore
architectures is the cost of cache misses (hundreds of cy-
cles) when a core uses data that other cores have written
[2]. Though the details can vary depending on the cache
coherency protocol, this does not just involve reads, but
writes as well. For example, when writing a value to a
core’s local cache, the write cannot be completed until all
the other copies are invalidated. Since well informed de-
velopers will know best how to build their systems, we will
provide them with analysis tools to help them understand
how the structure of their system affects its performance in
terms of concrete numbers like number of TLB misses, and
how cache coherency traffic is impacted. We will offer both
synchronous and asynchronous inter–component communi-
cation primitives, though we will pick the most reasonable
default, which will likely be asynchronous communication.
We will provide programming language level mechanisms to
help use both modalities effectively.

1.1.2 Composition
In many current models, system composers are faced with
attempting to leverage intricate hardwired dependency in-
frastructures in terms of scripts for configuration. Generally,
this problem is known as strong coupling—a property that
modern software development practices attempt to mini-
mize. One common way to mitigate some of these problems
is by way of dynamic component models. The life cycle
events of the OSGi Framework [9] are aimed at producing
loose coupling [6]. Specifically, the Life Cycle Layer in the
OSGi Framework allows components to listen for installa-
tions, updates and uninstallations of other components, ei-
ther synchronously or asynchronously. In the synchronous
case, the updater can evaluate the merit of the update from
a security point of view.

OSGi provides a solid reference model for our work in terms
of the ways in which it helps components establish commu-

nication, regulates what parts of a component’s interface are
exposed, which versions of components are running in the
system, and manages dependencies of the system. The basic
container of an OSGi component is a jar file. The jar file
contains a manifest which the OSGi class loader reads to find
out more about the module including: its name, its version,
the modules and version on which it depends, the interfaces
which it contributes to the system, and the packages and
classes which it uses within the system. A component can
also define a service, which is an interface that can be dy-
namically attached to. One of the keys to OSGi’s success is
the tool support provided by modern IDEs like Eclipse[9].
Eclipse provides wizards and property sheets to help de-
velopers understand the interface between components, and
how the eventual system will be constructed. Without this
support developers would be left to construct the elaborate
XML files for each bundle needs by hand. A task that is pos-
sible but undesirable. Recent work has shown that OSGi’s
life cycle model works well over a network[12]. In that work,
they show that they can map the failure of the links or com-
ponents, to an OSGi uninstallation, which other components
can monitor and deal with.

Using OSGi as guidance for a new component model, we
wrap sandboxes with component metadata to form virtual
components. Virtual components are sandboxes with com-
ponent model metadata which describes them fully in terms
of how they interact with the system and other components,
which other components and versions they depend on, what
state they are in, etc. This metadata is key to structuring
and controlling the system.

2. DESIGN OF LIND
Lind is an attempt to provide a new secure lightweight cloud
computing environment in the form of a new library oper-
ating system which is a concrete implementation of the vir-
tual component idea. The goal of the project is to create a
lightweight cloud runtime environment for anything which
can be executed on x86 processors, using Native Client[14]
(NaCl) and RePy[3]. NaCl is a project from Google which
aims to create safe websites written in X86 instead of html
and JavaScript, by running the X86 website in a SFI sand-
box. RePy is a restricted subset of the Python language,
used to implement the Seattle distributed system testbed.
The Lind project implements a useful subset of the POSIX
API within NaCl to run through RePy. RePy has a more
advanced policy mechanism with regards to resource con-
sumption than NaCl, RePy also has rate limiting for file and
network I/O, white and black lists for network connections
ports etc, memory usage monitoring, and CPU consumption
monitoring. The motivation of this NaCl RePy hybrid is to
expand NaCl’s access to the system to commonly used func-
tionality like sockets and simple file I/O and other NaCl
sandboxes, while still providing the necessary spatial and
performance isolation[3] as well as portability to make run-
ning untrusted applications anywhere possible. We think,
when RePy is coupled NaCl’s safe execution, this makes a
safe and powerful environment for some class applications
which have CPU intensive compute requirements, but sim-
ple system access needs.

As Lind is an extension to NaCl, Lind is designed to min-
imize its footprint within NaCl’s TCB (trusted code base).



To do that, most of the Lind code runs within NaCl RePy.
We have added support to allow RePy programs to launch
NaCl instances via a new RePy system call. The safe_execute
system call allows the application to specify a file from within
its working directory to execute. safe_execute uses a pro-
cess similar to NaCl’s built-in launcher (sel_launcher) to
fork a new loader process with the program and arguments.
When NaCl starts, it establishes a shared memory connec-
tion to communicate with, these channels are opened and
then handed over to the RePy program. One the RePy pro-
gram is running, the programmer is able to query if the NaCl
instance is still running, get its communication channels and,
if needed, kill the NaCl subprocess.

Using the safe_execute mechanism, we built a library OS.
The RePy program runs an RPC server which allows for it
to service calls from the NaCl instance. With in the NaCl
instance, we run a modified glibc where each system call
which accesses outsides of the sandbox (file I/O, network-
ing, process control) is redirected to the RePy server. The
initial version of Lind will focus on networking and file I/O.
For example when a file is opened, the fopen system call,
is marshaled and sent via RPC to the RePy server. The
RePy server opens the file on behalf of the NaCl program
(with all the restrictions RePy programs have on their file
operations). RePy’s restrictions include limiting allowed file-
names, blocking directory access, and rate limiting file read
and write.

One nice property of the Lind design is that we can pick
which system calls we will support with Lind. System calls
broadly fall into a few categories. First, system calls which
we leave alone. Those are calls like brk (memory allocation).
Second, some calls are emulated, for example open (open
a file). Third, some calls will be faked, for example stat

(check file information). The calls which must be faked calls
are those which there will be no direct analog for in RePy.
For instance file system permission related calls will be faked
because RePy programs do not have access to the global
file system, only their own local file system so maintaining
permissions in not needed.

One part of Lind is the library OS built with RePy. Though
in the early stages of development, we intend to make a
component based system, where components satisfy differ-
ent subsystems requests. The intent is to allow custom se-
tups including transparent in memory file systems, or over
network file systems. Finally, we intend to support process
migration, so that will be designed into the OS base.

A modified version of NaCl’s glibc forwards the target sys-
tem calls from NaCl to RePy for processing. To do this, code
which previously performed a system call now results in the
call arguments being marshaled and passed into RePy via
RPC. Our current implementation uses an RPC mechanism
built on NaCl’s IMC communication channels. For example,
an open() system call is changed into an RPC which passes
the path and other information to RePy. The RePy POSIX
code will emulate or provide functionality for directories,
permissions, and persistent storage. Since RePy does not
provide access to directories, directories will be emulated by
metadata that is stored in separate files on disk (and cached
in memory) and accessed from there. We have started to

choose the set of calls to initially support by running com-
mon programs and gathering their system call traces. Note
that some system calls will not be provided because they are
unsafe or cannot be efficiently executed in a portable manner
across the diverse OSes that are supported by RePy.

Though simple, building the RPC facility still presents some
challenges because programming at the lowest levels of glibc
is a complex and arduous task. We have already tackled
several challenges related to setting up a fast build environ-
ment, effective testing, marshaling atypically sized calls, and
a host of similar issues.

3. IMPLEMENTATION STATUS
While we currently have a very early stage prototype that
does an RPC between glibc and RePy for three calls, much
more work remains. Some preliminary exploration of real
programs using strace, a program which monitors which sys-
tem calls another program makes, has shown that we can
safely ignore a large number of system calls. System calls
can be ignored for several reasons, but mainly because they
have no meaning in our new system. We will further un-
derstand which portions of calls can be effectively faked and
what needs to be emulated. Our eventual goal is to have
a POSIX emulation API which works with nearly all code
right after compilation. If it will not work, our implemen-
tation will provide the developer a clear error message ex-
plaining why the software has failed to operate. Of course,
we intend to deploy our software so we will follow standard
software QA practices when developing our code.

4. EVALUATING A VIRTUAL COMPONENT
MODEL

How do we know we have won? Building a virtual compo-
nent system involves picking from a large set of trade-offs
between performance, isolation and security and compos-
tion. The problem with evaluating new systems like this
is that all the dimensions are interdependent. There is an
inherent fixed cost per communication; however, the more
modules the system has, the “better” the other properties
appear.

4.1 Characterising and Evaluating Performance
To truly understand the performance of a system like this
we have to be able to accurately characterize the costs of
the virtual component model. This falls into two categories,
first, the cost to components for running in the system (over
native execution), second, the inter-component communica-
tion cost, a cost which changes based on the structure of the
system.

To evaluate the system cost, we rely on the numbers of the
underlying system. In the case of Lind, that is the numbers
for the overhead of running in NaCl. The overheads asso-
ciated with running SFI modified native code are well doc-
umented in [14], which shows performance overheads (and
speedups) in the 0%-10% range, depending on the instruc-
tion composition of the program, and the number of system
calls it makes.

To evaluate the crossing overhead, we can use custom micro
and macro benchmarks like those described in [8] which eval-



uated the same overheads in popular virtualization. Besides
raw timing numbers, running benchmarks like the aforemen-
tioned gives us a controllable environment from which TLB
and cache coherency traffic can be measured. This should
allow us to inductively reason about the characteristics of
Lind at scale.

4.2 Characterising and Evaluating Isolation
Sandboxing techniques form the basis for the desirable prop-
erties which come from a virtual component model. The
techniques themselves have limitations; but furthermore, there
is a need to circumvent the sandbox to create a meaningful
system, as components must communicate with each other.

To evaluate isolation, we need to verify that the previous iso-
lation systems properties are not lost when we start adding
communication to the system. Further, we need to show
that by adding communication that we opened no new side
channels.

4.3 Characterising and Evaluating Security
We claim that systems utilizing Lind are immune to a broad
class of attacks, including privilege isolation attacks and se-
rialization attacks, including but not limited to many types
of resource exhaustion attacks, Cross-Site Request Forgery,
Cross-Site Scripting, SQL injection, and Cross-Zone Script-
ing. Moreover, most demonstrations of immunity from privi-
lege escalation and abuse of serialization (essentially, passing
misleading types in text data structures) can be tested and
demonstrated in non-pathological situations. Malware is, by
definition, exploitation of a bug for malicious purposes; if a
system is free of a class of bugs exploited by a specific class
of malware, it is necessarily immune to those classes of mal-
ware. Our initial security work will focus on demonstrating
freedom from privilege escalation and serialization errors.

Security comes from a few properties of the system. Small
components with good interfaces and no side channels make
it hard for one component to intentionally or unintentionally
stop another component from fulfilling its task. The com-
ponent system also provides an opportunity for the system
to help enforce the policy of the system.

One way to evaluate the security of the proposed system is
to reason about possible attack vectors on it. Another way
is to see how it impacts current common security problems,
such as those listed by SANS1 or the OWASP2.

4.4 Evaluating Composition
The programming environment impacts directly on the ease
with which virtual components can be constructed. The goal
of the Lind environment is to extend standard tools which
programmers are already familiar with, making composition
a first class citizen relative to current means of compos-
ing heavier weight virtual appliances. By better integrating
composition with current agile development practices and
tool support, we can provide explicit customizability in ways
that currently require intricate configuration management.

1http://cwe.mitre.org/top25/
2https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

For example tools similar to those in Eclipse’s PDE[9], could
dynamically check dependencies, or even construct commu-
nication models to describe and later enforce component
communication behaviour. Since components share no state,
it would be possible for these tools to prepackage entire com-
ponent graphs, or even setup dynamic update plans. All in
a format very similar to how developers build OSGi based
application in Eclipse right now.

Current compositions of virtualized subsystems are typically
manually configured through less explicit means, making
composition more of a side effect than an explicit element of
the system. In the most common case composition is hard
coded as the system is built with no intent to ever have it
changed again, and configuration takes the form of manually
editing text configuration files.

5. CONCLUSION
In this paper we presented a new composition technique
called virtual components, and our initial implementation of
the idea in the form of a prototype system called Lind. Lind
is a component model which runs x86 code on a POSIX API
within each component, and provides a lightweight commu-
nication mechanism. Challenges associated with the evalua-
tion of the efficacy of this approach show direct tradeoffs in
terms of performance, isolation, security and composition.
Our hope is that by leveraging existing workflow practices
and integrating with known tools, the programming experi-
ence with compositions of virtual components will be more
flexible relative to manual approaches currently in use by
heavier weight systems. We see this as a means of poten-
tially supporting more customization according to applica-
tion specific needs for component isolation and security.
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