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ABSTRACT
Modern software design has less writing large programs and
more orchestrating the actions of prewritten library elements.
These elements, generally known as components, are state-
ful software elements which can operate and interact in un-
expected ways. Most errors in large systems result from
unanticipated behavior from components, or unexpected in-
teraction between components. In this paper, we argue that
two principal innovations permit the rapid construction of
far more robust and reliable software systems: rigorous con-
tainment, to control interactions, and active modeling with
dynamic model checking, to rapidly detect unexpected be-
havior. We outline a small set of requirements which will
produce such a system, NanoXen, of virtual components,
the component analog to virtual machines.

1. INTRODUCTION
Component models like OSGi [1] and CORBA [19, 27] al-
low developers to build programs from scratch out of com-
positions of prepackaged elements. These elements can be
further customized and replaced without requiring major
changes to the rest of the system. Modern component mod-
els provide things like: life cycle management, naming, ver-
sioning, and interface lookup services [18, 30]. However,
these systems have limitations that make it difficult to build
verifiably secure systems upon them. Fundamentally this is
due to failure to provide different trust domains within a pro-
gram. For example, in OSGi if multiple components load the
same library, there is no clear isolation between their interac-
tions with it and both clients will share the same instance—
including mutable static state. These interactions between
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components mean that an accurate analysis must account
for the interactions of both components concurrently.

We propose to address this challenge with two complemen-
tary techniques that are used in concert.

1. A rigorous containment system based on the rig-
orous containment of program actions. We propose to
enforce module isolation within a programming lan-
guage which will rigorously isolate sub-components of
a large system.

2. An active modeling system, where the behavior and
interactions between modules is specified by a model.
The models are sufficiently simple that an ensemble of
them can be checked for appropriate properties, and
sufficiently precise that implementations can be dy-
namically checked for correspondence with the model.

The importance of combining these techniques cannot be
overstated. Without rigorous containment, modeling will
be inaccurate or will not scale. Without modeling, isolated
components could not interact and thus would be useless.

In the remainder of this position paper, we detail the design
of our proposed NanoXen system in terms of components
and modeling, and overview specific implementation details
concerning the language, interpreter, and device interaction.

2. DESIGN
In this section we describe the specific ways in which virtual-
ization allows us to enforce isolation, and modeling allows us
to verify interactions. We motivate much of this work from
the perspective of building secure systems, demonstrate why
virtualization is necessary, and present a design to leverage
modeling for analysis, testing, and runtime checking.

2.1 Virtual Components
One technique that has proven effective at limiting the scope
of both bugs and malware in the operating systems area is
system virtualization. Virtualization restricts communica-
tion between VMs to be through specific APIs (like the file
system), allocates resources to VMs, and provides security
isolation between running programs.

Virtualization has provided leverage within the security do-
main; however, current heavy-weight virtualization is not



suitable for use within portions of an application. Some of
the advantages can of course be obtained by using very fine-
grained processes and replacing intra-process procedure calls
with interprocess service interactions. However, because of
the performance and programmer burdens of doing so, we
expect that programmers will continue to write relatively
large, unfactored applications. For this reason, an intrapro-
cess analog to the virtual machine is desirable.

A virtual component is the intraprocess analog to the inter-
process virtual machine. Conceptually, this adds guarantees
of protection and isolation to the popular software compo-
nent architecture concept, which has such concrete realiza-
tions as Java Beans [19] and OSGi [1].

One might reasonably ask at this point why component vir-
tualization is necessary. We note the following:

1. Executing programs are typically assemblages of com-
ponents (DLLs, SOs, etc) which are written by differ-
ent programmers, at different times, for different cir-
cumstances. Despite this, when they are combined into
a program, they all have the same authority.

2. Consumption of resources by a program component is
unrestricted, and access to shared state is only par-
tially controlled.

3. A component can and will block the remainder of the
program from executing while it is executing; there is
no provision for the independent monitoring and con-
trol of a component.

4. A collection of components need not be locked to one
physical machine, they could be moved dynamically,
or be distributed across several machines.

In sum, the intuitive model of a single program is a collec-
tion of tightly-coupled routines which run to complete a job,
and then terminate. However, in today’s world of persistent
services, a program is more likely to run indefinitely. Fur-
ther, (1) above suggests that such programs are assemblages
of mutually opaque, and essentially untrusting, components.
This means that a program now looks less like a batch job
than a collection of processes in a time-sharing system; how-
ever,to date, there is no equivalent of an operating system
to control this collection of components. The rise of parallel
systems will accentuate this need.

A critical feature in the design of secure, robust, resilient sys-
tems is robust, reliable, parallel computation. Clock speeds
on processors flattened in the early 2000’s, and Moore’s Law
now describes the doubling of processor cores on a die at
a constant rate. In such an environment, reliable parallel
processing is a requirement. Unfortunately, reliable parallel
processing within a single address space has proven to be
a challenging problem. The most common abstraction in
use today is threads: multiple independent control threads
and call stacks in a single process. While these are quite
lightweight, they have proven to be a debugging and secu-
rity challenge [36, 43]. The essence of the problem is that
the behavior of a multithreaded program is no longer deter-
ministic and solely dependent on the program text. Rather,

it is dependent on the behavior of the program text and
the implicit thread scheduler, whose behavior is generally
completely unspecified.

These concurrency semantics are a veritable bug ranch, and
a fertile nursery of security holes, including race conditions
such as TOCTTOU (time-of-check-to-time-of-use) bugs. Anal-
ysis of such errors indicates that the fundamental problem
underlying multiple independent threads of control is false
synchrony: an implicit guarantee that the state of a remote
thread is determined, when in fact it is indeterminate. For
example, in a TOCTTOU bug, the fundamental assumption
is that the checked variable has not changed value between
the time it is checked and the time it is used. In NanoXen, all
nondeterminism is explicit; in particular, there is no implicit
synchronization between independent threads of control.

1. Virtual Components are guarded with specific permis-
sions, access is enforced by the system to explicit typed
interfaces.

2. Virtual Components communicate events asynchronously.
Asynchronity is a natural model for virtual compo-
nents, as VMs are run on separate cores in many core
machines. In the event synchronous communication is
needed, it can be built on asynchronous primitives.

3. The interpreter enforces memory isolation between vir-
tual components. There is no way for the virtual com-
ponent itself to break this isolation.

4. Virtual Components share no variables; shared vari-
ables creates a form of synchronous communication
between virtual components.

It should be noted that there are many similarities between
Virtual Components in the NanoXen system and Virtual
Machines in any standard virtualization environment such
as Xen. In particular, communication between virtual com-
ponents is explicit; virtual components are independently
scheduled and logically asynchronous; there is no possibility
of state interdependence between virtual components. This
leads to the essence of this project: virtual machines at the
granularity of a thread in a programming language. These
components must therefore be lightweight. In particular,
creation of a virtual component is similar in concept and
implementation to object instantiation in a Java-like lan-
guage. Inter-component communication involves only a few
extra function calls and so should be within a small linear
factor of function call performance.

2.1.1 Isolating Virtual Components
Even well modeled software has bugs. As a result, it is
essential to minimize the impact of faults until a fix is avail-
able. Fortunately, minimizing the impact of a fault can be
provided by dividing code into virtual components and then
isolating those components from each other. Apart from a
well-defined (and validated) interface that is explicitly de-
fined for communication, virtual components are isolated.
Informally, isolating components means they cannot inter-
act spatially, meaning a component can not affect another’s
memory, or temporally, meaning a component slows another



or causes it to block. Virtualization provides these kinds of
isolation well.

To provide isolation between virtual components, the API
calls that are used by a virtual container are specified by the
virtual component that created it. Namely, the ability to
send an asynchronous event to a virtual component requires
a capability. This capability may be selectively provided,
denied, or replaced by the creating virtual component. In a
nutshell, this means that system call interposition is a first
class mechanism in this design. This capability allows a vir-
tual component to transparently enforce security policies by
substituting functionality with the same semantics. For ex-
ample, the device owner may wish to pose restrictions on the
remote endpoint of any network traffic sent by an applica-
tion. This can trivially be done on a per-virtual component
basis by replacing the network capabilities with capabilities
that validate the arguments and utilize the original capabil-
ity only if the remote endpoint is allowed.

Using virtual components as the unit of componentization
in a component model leverages some of the most low level
principles of modern system design to stop unintended inter-
action amongst components. But with virtual components,
we can leverage active modeling techniques in new ways.

2.2 Modeling
Many model-checking systems provide a modeling language
and an analyzer [45]. However, they often rely on specialized
modeling languages different from any production program-
ming language, and do not support testing. As a result the
analysis is not easily integrated with development. Con-
versely, many popular unit test frameworks [28] use the pro-
duction programming language as the testing language, and
(partly thanks to this) have been enthusiastically accepted.
However, they require the test engineer to code each test
case and the oracle (assertions) that check each test case, so
they provide no modeling and little test automation.

There are model-based testing systems that use the imple-
mentation programming language and provide a good deal
of test automation [55]. The most pertinent of these, Spec
Explorer [56], NModel [32], and PyModel [48], are distin-
guished from most others by special emphasis on providing
powerful analysis tools, and also by their use of composition
(a generalization of the intersection of finite automata) as a
versatile technique for combining models, expressing prop-
erties to check, and limiting analysis to scenarios of inter-
est [57]. PyModel is further distinguished by using Python,
a dynamic language, instead of a statically-typed language
as most others do (Spec Explorer and NModel use C#).

Model-based testing has been used in industry, but only
post-hoc: test engineers were given informal documentation
and an implementation to test, and then reverse-engineered
the models [20, 26]. In fact, this led to a significant du-
plication of effort, since developers and programmers incor-
porated partial models into their executing code – assert
statements, input checks, and so on. This both obscured
the model and complicated the code, rendering more dif-
ficult testing, verification, and programming. Further, the
resulting code bloat had deleterious effects on performance,
due to increased instruction cache miss rate.

2.2.1 Modeling, analysis, testing, and runtime check-
ing

While we have argued that it is essential for each component
to have precise semantics, we have not yet described how we
will achieve this. In order to validate the semantics of the
system, we apply several techniques that leverage recent ad-
vances in model-based testing [10,20,26,32,42,48,51,55,56].
The key idea is to construct a model for the semantic be-
havior of the system in the system’s programming language.
We can then use this model in several complementary ways,
which together provide very strong assurance. Since the
model and system are in the same language, the models
and techniques are accessible to developers and testers, not
just formal methods experts, and implementation is straight-
forward. The techniques are modeling, which captures im-
portant system properties by writing a model program, a
kind of executable formal specification; analysis, which uses
model programs to validate and analyze designs, resulting
in machine-checked proofs; testing which confirms that the
implementation conforms to the model by generating, ex-
ecuting, and checking tests; and runtime checking, which
confirms that behavior during operation does not violate
the intended semantics, by performing runtime checks using
the same models.

The following paragraphs explain the techniques in greater
detail.

Traces represent samples of behavior. A system’s behavior
can be completely specified by describing all the traces it
is allowed to execute (and all the traces it is forbidden to
execute). Traces are central in our modeling, analysis, and
testing tools; many activities either generate or use traces.

A trace is a sequence of atomic units of behavior called ac-
tions, where each action has a name and arguments. For
example, in a trace of network activity, the actions are mes-
sages; the action names are the message types and the ar-
guments are message contents. In a trace of API activity,
the actions are API calls and returns; the names of the API
methods are the action names and the API arguments are
the action arguments. Each API call and return are sepa-
rate actions (with different names), in order to account for
the possibility that a call might not return, and to represent
asynchronous actions. We distinguish controllable actions
that a tester can invoke (such as API calls) from observable
actions (such as API returns, exceptions, and events). Col-
lections of traces can represent concurrency by interleaving:
actions that occur in different orders in different traces can
be considered to occur concurrently.

Model programs are executable specifications; each model
program describes a (possibly infinite) collection of traces.
Model programs are expressed in a particular style: they are
collections of state variables and guarded update rules. For
each kind of action (each action name) that can appear in
a trace, there are two methods in the model program: The
enabling condition or guard is the precondition, a boolean
function on state variables and action arguments which is
true in states where the action (with those argument values)
is allowed to occur. The update rule is a procedure that
implicitly establishes the postcondition by updating state
variables, possibly using the values of its arguments. Model



programs are usually non-deterministic: several, or many,
actions are enabled in each state.

In general, model programs are not finite state machines
(FSMs); the action arguments and state variables can in-
clude numbers and rich data structures such as sets and
maps. We use these infinite contract model programs as spec-
ifications. If arguments and state variables are limited to a
finite number of values, a model program is an FSM. We
use these finite scenario machines to limit analyses and test
generation to scenarios of interest and to describe properties
to check.

Model programs can be expressed in almost any program-
ming language. It is usually most convenient if the modeling
language is the same as the implementation language. This
makes modeling and analysis accessible to developers and
testers, not just formal methods experts.

Composition is a versatile technique for combining two or
more model programs. It is a generalization of the inter-
section of finite automata. We use composition to build up
contract model programs in modular way, and to combine
contract model programs with scenario machines for analysis
or test generation.

Analysis uses a process called exploration that is similar
to model checking. Exploration generates a finite state ma-
chine (FSM) from a model program by executing enabled ac-
tions, starting at an initial state, drawing action arguments
from finite domains, backtracking to explore nondeterminis-
tic alternatives, until no more alternatives remain, or some
specified stopping condition is reached. Every path through
the generated FSM represents a possible trace. Properties
are checked by examining the FSM; the analyses are conclu-
sive within those finite domains.

We can define safety conditions or invariants: boolean con-
ditions on state variables that are supposed to be true in all
states. In safety analyses, we search the generated FSM for
unsafe states where an invariant is violated. We can define
accepting states: boolean conditions on state variables that
are supposed to be true at the end of every trace. In liveness
analyses, we search for dead states that have no path to an
accepting state.

We determine whether a model program accepts a trace by
computing their composition: exploring the model program
and the trace in parallel, synchronizing on shared actions
and interleaving unshared actions. If exploration reaches the
end of the trace, the model program accepts it. This can be
generalized to any scenario machine, so we can check any
property than can be expressed as an FSM (any temporal
logic formula).

Validation is analysis that determines whether a model
program exhibits the intended behaviors by checking whether
it accepts traces that are known to be allowed or forbidden.
Such traces can be constructed a priori or collected “in the
wild”.

Offline testing proceeds in two stages. In the first stage,
the framework’s offline test generator produces a trace from

a model program, in a process similar to exploration but
with no backtracking. In the second stage, the framework’s
tester or test runner causes the implementation to execute
each controllable action in the trace (for example, it calls
the API), and checks whether the implementation performs
each observable action in the trace (it checks the return val-
ues). This second stage does not require a model because
all the needed information is in the traces. Offline testing is
effective where traces are expected to be reproducible (de-
terministic).

On-the-fly testing is needed in situations where repro-
ducibility is not expected, due to nondeterminism (in the
network environment, for example). To perform on-the-fly
testing, the test runner does not use a pre-computed trace,
instead it uses the model program to generate the trace as
the test run executes. The test runner executes the model
program during the test run in order to choose controllable
actions to execute in the implementation, and also executes
the model program to check the results (observable actions)
from the implementation. The test runner captures data
from observable actions and uses that data in subsequent
controllable actions.

Runtime checking confirms that behavior during opera-
tion does not violate the intended semantics. It is similar to
on-the-fly testing, except it uses an interposition layer in the
live system rather than a standalone test runner (it also con-
siders all actions to be observable.) In effect it is similar to
checking assertions coded into the implementation, but here
the separate model program and interposition layer contain
the assertions and do the checking.

Governance uses the modeling layer to dynamically check
invariants and temporal properties of both the behavior of
virtual components and the environment within which those
components operate. This is a natural extension of runtime
checking. In this procedure, detection of an anomalous or
malformed incoming message results in a dropped message
or exception; anomalous behavior of a component results
in an exception or other corrective action. This has two
central advantages. First, of course, the system becomes
self-monitoring and adaptive, and resilient to failures. More
subtly, code is simplified. Even a cursory examination of
the code of most programs reveals that much of the code
is devoted to anomalous behavior, poorly formed inputs,
and exception handling. Much of this code is devoted to
implicit model enforcement: a check for a null pointer on in-
put, for example, is essentially a dynamic model check. Ex-
plicitly factoring this code into a dynamic execution model
both simplifies the code of the component, and makes the
model of usage of the component far more transparent to
the caller’s user. To our knowledge, this is the first proposal
to make this logical extension of runtime checking.

2.3 Design Diagram
We propose a layered architecture where each layer has pre-
cise semantics. The semantics are validated by modeling
the API’s behavior at each layer. A diagram showing our
design can be found in Figure 1. We divide both the compu-
tational and device interaction portions into separate layers
that have precise semantics. We iteratively build up to a
full featured implementation through a series of incremen-
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Figure 1: Layers in the NanoXen System

tally more expressive layers. Once we arrive at the core API,
all of the virtual components in the system are built using
this API (the core API is analogous to the system call API
or standard library API in modern OSes).

When instantiating a new virtual component, the parent
virtual component maps in functionality that performs the
set of API calls for its new child virtual component. The
API that is provided can be the parent’s core API (which
behaves like spawn or fork/exec in modern OSes) or may
be modified functions that allow the parent to interpose on
the child’s API calls. In addition to simply running custom
code in response to API calls, the parent may also separately
track and control the resources allocated to the child virtual
component. To execute legacy code, a virtual component
may be bound to a legacy program instance. This allows
the legacy code to use a single system call to map a memory
request page into the parent virtual component. The legacy
program uses this page to communicate with the parent vir-
tual component which will perform API calls on its behalf.
All of the APIs and virtual components in the system are
tested and semantically validated according to model-based
tests.

3. IMPLEMENTATION DETAILS
Building and modeling the entire system with one language,
requires a language which is appropriate for all levels of the
programming, from the low level run time, to the applica-
tions which are running it it. The SeSL language and our
device model is our attempt to satisfy that need, and trans-
late well modeled components into a well running system.

3.1 SeSL Language and Interpreter
Existing programming languages have strengths and weak-
nesses with regard to writing secure systems code. The im-

portant features we want from the language are readability
of code, strong program semantics, verifiability, and abil-
ity to integrate with low-level systems code. We believe
the existing language that best fits these goals is Python,
and so chose to base the initial language syntax loosely on
the Python programming language. The main reason why
Python itself is inadequate is mostly due to difficult to un-
derstand program semantics, particularly with respect to
namespaces and mathematical operations. Python also has
a significant amount of introspection built into the language
which makes security restrictions difficult. Based on our
experiences with building secure Python subsets, we will
construct a language with the features of Python that are
useful for writing secure systems code, but lacking the se-
mantic complexities and introspection that exist in the full
language.

The interpreter is a high-risk area for bugs. Instead of
writing the entire interpreter as a single program in a non-
memory safe language, the interpreter is constructed itera-
tively. First in a non-memory safe language we build the
interpreter core, a container that understands a minimal
subset of the language. This subset is enough to allow us
to build an interpreter that understands the full language
in memory safe code — removing the possibility of buffer
overruns, etc. in this code. The language provided by the
interpreter core only supports a single namespace, does not
support objects or functions, and can compute using basic
comparison and arithmetic operators. We use this subset as
a building block. This language is kept primitive in order to
reduce the amount of memory safe code in the system and
to simplify the semantics of the interface.

On top of the API provided by the interpreter core we con-
struct a usable interpreter that supports objects, functions,
namespaces, exceptions, and other common language func-
tionality. This set of language functionality provides the
computational processing that is essential for clean program-
ming practices. Using these abstractions, we construct the
rich built-ins that modern languages typically have to make
programming easier. These include helper routines that in-
teract with basic types to provide type conversion, string
processing, list processing, and similar functions. This set of
functions is the bare minimum computational environment
that exists in the core API.

One important feature of the usable interpreter is that it
supports, encapsulates and validates validates object-capability
design patterns. The model of the interpreter validates that
capabilities (i.e. function and object references) do not leak
across namespace boundaries unless they are explicitly mapped.
This mechanism is leveraged to construct the isolation bound-
aries between virtual components.

3.2 Device Interaction
Operating system semantics differ widely from system to
system, even for purportedly portable APIs like POSIX [31].
The result is that programs written for one operating system
mostly work on other systems, in particular if the program-
mer limits themselves to a most commonly used portions of
the API. This is also a major problem for programming lan-
guages that wish to be portable, such as Java [33]. This has
led to developers recoining the Java slogan as “write once,



debug everywhere” because of portability issues [11, 12, 22].
To illustrate the difficulty of the problem, over half of the
code in the Seattle testbed’s programming language virtual
machine solves OS-specific problems [10]. This is despite the
fact that all of our supported OSes provide the POSIX API.
It is essential that the programmer understand an API’s se-
mantics in order to implement vulnerability-free programs.

The device interaction system comprises the portions of the
core API that perform I/O and similar tasks. While device
interaction occurs much less frequently than the interpreter,
the semantics of device interaction tend to be more complex.
In most operating systems, device interaction functionality
primarily resides in the OS kernel as well as parts of the
standard libraries. As with the interpreter, we divide this
component into sub-components to mitigate the risk of cer-
tain types of bugs.

The Low-level Device Control layer acts as a Micro-Hypervisor
and interacts directly with the raw devices on the system,
much like the boot loader and device drivers in traditional
OS hypervisor. The role of this layer is to provide a mini-
mal, semantically consistent interface for controlling devices.
All non-memory safe code that is needed for controlling de-
vices exists at this layer. This also contains the entirety of
the system code that must execute with escalated processor
privileges. This layer includes functionality that is neces-
sary for enforcing control of system resources. That is, the
mechanism (but not the policy) that can assign and revoke
control of resources to a specific legacy program or virtual
component.

The Usable Device Control layer is constructed on top of
this, written in SeSL and running on the usable interpreter,
the usable device control layer calls the low-level device con-
trol mechanisms. The usable device control layer is respon-
sible for providing higher-level abstractions for resource ac-
cess. For instance, the low-level device control layer supports
reading and writing disk blocks, while the usable device con-
trol layer provides a file abstraction as part of the core API.
In addition, the resource manager provides the lowest-level
resource allocation policies. This is constructed in a manner
that allows secure reasoning about resource guarantees along
with separate restrictions for subcomponents of application
processes.

4. DISCUSSION
The efficacy of NanoXen rests on two fundamental assump-
tions:

• The continuing development of software as relatively
large executables contained in a single address space,
composed of stateful components.

• The ability of software developers to construct intelli-
gible, lightweight, accurate, dynamic models of a com-
ponent’s behavior, and maintain the accuracy of those
models as the component changes over time.

Both of these assumptions are of course open to question.
An alternate architecture for large software systems is as a
collection of collaborating processes communicating through

some form of a services-oriented architecture implementa-
tion. This relies on the development of very lightweight
interprocess communication, and possibly very lightweight
VMs. As for the second assumption, programmers histor-
ically have embraced tools which make programming eas-
ier and software more reliable: memory management, ex-
ceptions, and object-oriented programming, to name three
examples. Indeed, exceptions can be thought of as a very
lightweight form of dynamic model, and typing a weak form
of static model. Further, static modeling tools such as UML
have found adoption, even with weak ties to implementation.

Over the next two years, we will complete the development
of a prototype NanoXen system in SeSL, and demonstrate
its efficacy by building a simple multicomponent system in
NanoXen. This comprises an implementation study and a
design study. In the implementation study, we will deter-
mine whether virtual components are efficiently, scalably im-
plementable. In particular, we must demonstrate that the
intercomponent communication overhead is tractable and
that the pervasive, dynamic model checking adds little over-
head.

In the design study, we will attempt to demonstrate that
virtual components actually make a programmer’s life eas-
ier. In particular, we will attempt to show that programs
are more reliable, less buggy and that incorporating models
makes implementations smaller and simpler.

5. RELATED WORK
Weaknesses in modern “secure” programming language VMs
such as Java are well known [7,13,16,35,38,44,49,50,54]. To
deal with this, capabilities [37] have been proposed as a way
to secure programming languages [40,41]. Object capability
languages have proven a principled technique for achieving
the long studied problem of dividing an application into se-
curity contained components [14,29,52].

Besides the customized use of Python in the Seattle testbed [8,
9], Joe-E [40] is the only other object-capability language
that uses a subset of a widely used programming language
(Java). Current work on Joe-E is entirely reliant on the Java
interpreter and hundreds of thousands of lines of standard li-
brary code, a major limitation they acknowledge [40]. In this
work, we have a layered design where the maximum amount
of functionality possible is pushed out into virtual compo-
nents. This should help to minimize our Trusted Computing
Base (TCB). Work by Stiegler and Miller [53] on a capabil-
ity subset of OCaml demonstrated that object-capabilities
do not have to impact the language’s expressivity or perfor-
mance.

Our design draws inspiration from a significant amount of
historical work on layering [17,34] and object-capability based
operating systems [37]. More recently, failure isolation tech-
niques have been applied to many different domains includ-
ing operating system separation of processes [3], virtual ma-
chine separation of operating systems [5, 24], constraining
the functionality of a process [39], or running mutually dis-
trustful programs within a single process [4, 15, 58]. In this
work, we focus holistically on the problem and co-design
both isolation and separation of code to promote security
concurrently.



As a way of adding security to processes in legacy operating
systems, some researchers have also proposed to interpose
on a process, usually at the system call layer [2, 6, 21, 25,
46,47]. However, in legacy systems system call interposition
mechanisms are prone to subtle errors [23,59] which has led
most practical systems to abandon them. This problem is
due mostly to the difficulty of getting the semantics for such
an interface correct — a problem that we can avoid through
model-based testing.

6. CONCLUSION
In this paper we explore the construction of large programs
using a virtual component system. Our virtual component
design uses an active modeling system to evaluate the be-
havior of rigorously isolated program components. We be-
lieve the combination of small, self-contained components
and rigorous modeling will allow us to quickly and reliably
detect errors due to unanticipated component behavior.

While our work is still in early stages, we are working to
apply this to a complete software stack from the hardware
to the user to test its effectiveness. By employing models
in between system components, we hope to retain efficiency,
while increasing system security and robustness. We believe
that this work will lead to the development of trustworthy
and secure computational devices.
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