
Isolating Legacy Applications with Lind

by

Christopher James Matthews

B.Sc., University of Victoria, 2004

M.Sc., University of Victoria, 2007

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Christopher Matthews, 2013

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Isolating Legacy Applications with Lind

by

Christopher James Matthews

B.Sc., University of Victoria, 2004

M.Sc., University of Victoria, 2007

Supervisory Committee

Dr. Y. Coady, Co-supervisor

(Department of Computer Science)

Dr. S. W. Neville, Co-supervisor

(Department of Electrical and Computer Engineering)

Dr. R. McGeer, Departmental Member

(Department of Computer Science)

Dr. K.F. Li, Outside Member

(Department of Electrical and Computer Engineering)

iii

iv

Supervisory Committee

Dr. Y. Coady, Co-supervisor

(Department of Computer Science)

Dr. S. W. Neville, Co-supervisor

(Department of Electrical and Computer Engineering)

Dr. R. McGeer, Departmental Member

(Department of Computer Science)

Dr. K.F. Li, Outside Member

(Department of Electrical and Computer Engineering)

ABSTRACT

Legacy applications, often written in C, can be riddled with bugs. Sarcastically

referred to as “veritable bug ranches”, pre-existing legacy applications of substantial

size and complexity are still commonplace. In this dissertation, I motivate, build

and evaluate Lind, a sandbox for legacy applications. Lind decreases the impact

of buggy programs on the system that runs them. It does this without changing

their code or destroying the non-functional characteristics of the programs—such as

v

performance, portability, light-weightedness and ease of deployment—which are the

primary motivators for legacy software written in C. Lind borrows many principles of

secure system design to help it isolate legacy applications so they cannot impact the

rest of the system. To assess Lind, I evaluate how well legacy applications perform in

Lind, how strong the isolation Lind provides is, and how easy it is to port applications

to Lind—all to conclude that Lind is a viable proof-of-concept platform for legacy

applications.

vi

Contents

Supervisory Committee ii

Abstract iv

Table of Contents vi

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Problem: Legacy Is Here To Stay . 4

1.2 What are the Costs of Isolation? . 6

1.2.1 Quantify Costs with a Web Server 12

1.3 Response: Sandboxing Legacy Applications 15

1.4 Overview . 15

2 Design and Architecture of Lind 17

2.1 Design and Requirements . 17

2.2 Native Client and Seattle Repy . 19

2.2.1 Isolation Model . 22

2.3 The Lind Dual-Sandbox . 22

2.3.1 Addressing the Portability Goal 24

vii

2.4 Lind Compared to NaCl . 26

2.5 Customizing the Repy Sandbox . 27

3 Implementation of Lind 31

3.1 The Life of a System Call in Lind . 33

3.1.1 Implementing Each System Call 33

3.2 Implementing the File System in the Library OS 37

3.3 Building a RPC System for C . 39

3.4 The Lind Trusted Code Base . 42

3.5 The Lind Untrusted Code Base . 43

3.6 Local File System Integration: lind-fuse 43

3.7 Implementation Effort . 44

3.8 Discussion and Reflection . 44

3.9 Summary . 45

4 Experimental Methodology and Evaluation 47

4.1 Methodology . 48

4.1.1 Fun? Characterizing Ease of Deployment 48

4.1.2 Fat? Characterizing Light Weightedness 49

4.1.3 Fast? How to Characterize Throughput 49

4.1.4 Flawless? Characterizing and Evaluating Bugs 50

4.2 Evaluation . 50

4.2.1 Experimental Environment . 50

4.3 Porting Tor to Lind . 51

4.3.1 Compiling Tor . 54

4.3.2 Running Tor . 57

4.3.3 Execution Throughput . 61

viii

4.3.4 Isolation . 62

4.3.5 Compute Workloads . 63

4.4 Overhead of a System Call . 65

4.4.1 Application Performance . 69

4.5 Size of System Calls . 79

4.6 Memory and Disk Consumption . 80

4.7 Quantifying I/O Slowdown . 82

4.8 Quantifying Isolation . 83

4.9 Mitigating Privilege Escalation . 84

4.10 Summary and Discussion . 86

5 Related Work 89

5.1 Building Secure Systems . 91

5.1.1 Sandboxing in the Wild . 95

5.2 Systems Providing Sandboxing . 102

5.2.1 System Call Interposition . 104

5.3 Alternate System Structures . 107

5.4 Sandboxing in Applications . 112

5.4.1 Software Fault Isolation . 113

5.5 Security and Lind . 118

5.6 Summary . 119

6 Future Work and Conclusions 122

6.1 Missing System Calls . 122

6.2 Lind’s Performance . 124

6.3 Lind Cloud . 126

6.4 Access to Data . 126

ix

6.5 MacroComponents . 127

6.6 Better Policy Enforcement . 128

6.7 Conclusion . 128

A Additional Information 129

A.1 Software Tested in Lind . 129

Bibliography 130

x

List of Tables

Table 1.1 Microbenchmark running on three different platforms. 11

Table 3.1 The Repy version 2 system call table. 35

Table 3.2 The Lind system call table. 36

Table 3.3 Lines of change to the TCB . 42

Table 3.4 Lines of code inside the sandbox 43

Table 4.2 Errors encountered while porting Tor. 59

Table 4.3 The developer time it took to port Tor. 60

Table 4.4 The execution time for 50 runs of the Primes benchmark 65

Table 4.5 Time components from the stable part of Figure 4.5. 68

Table 4.6 Software used in the evaluation. 70

Table 4.7 Results from Tor’s builtin benchmark program. 78

Table 4.8 Results from different sizes of null system calls. 79

Table 4.9 Memory and disk consumption of programs in Lind. 81

Table 5.1 Common security weaknesses from OWASP [1] and SANS [2]. . 93

Table 5.2 Some security best practices which apply to building sandboxes [3]. 94

Table 5.3 Sandboxing related OS functionality. 102

Table 5.4 Comparison of some similar systems to Lind, and what they isolate.104

Table 5.5 Research systems providing isolation. 111

Table 5.6 Virtualization systems providing isolation. 111

xi

Table 5.7 Systems that use SFI. 118

Table 5.8 Common security weaknesses and how they play out in Lind. . . 121

Table A.1 Software which was tested in Lind. 129

xii

List of Figures

Figure 1.1 The granularity spectrum and some common points on the spec-

trum. 5

Figure 1.2 The configuration of master and forwarder nodes. 8

Figure 1.3 Round trip packet times in a single hop experiment. 9

Figure 1.4 Histogram of response times of lighttpd running on single Linux

machine. The x-axis is the response time, and the y-axis is the

frequency of response at that time. 12

Figure 1.5 Histogram of response times of lighttpd running on two Linux

machines. The x-axis is the response time, and the y-axis is the

frequency of response at that time. 13

Figure 1.6 Webserver on two virtual machines. 14

Figure 2.1 The architecture of Lind. 25

Figure 2.2 The software stacks of NaCl in the Browser and Lind. 26

Figure 3.1 The path of a system call while being processed by Lind. 34

Figure 4.1 Flowchart of the process of porting an application to Lind. . . . 53

Figure 4.2 Execution times for the Primes benchmark. 64

Figure 4.3 Timer locations on the path of a Lind system call. 66

Figure 4.4 Execution time breakdown of the getpid system call. 67

Figure 4.5 Execution time breakdown of the getpid system call in Repy. . 67

xiii

Figure 4.6 Lind and Native performance of grep. 70

Figure 4.7 Lind and Native performance of wget. 70

Figure 4.8 Grep execution times running natively versus in Lind. 71

Figure 4.9 Native and Lind performance of GNU Wget. 73

Figure 4.10Performance of the NWeb web server in Lind. 75

Figure 4.11Transmission time of binary data files in netcat over the WAN. 76

Figure 4.12Time to write 40 MB to disk on different platforms. 82

Figure 5.1 The isolation granularity spectrum. 90

Figure 5.2 In XCode, selecting the application sandbox’s entitlements. . . 97

Chapter 1

Introduction

Software bugs—unintentional flaws in software—are thought to cost the United States

many billions of dollars per year [4], while global costs are estimated in the trillions

[5]. A portion of these bugs are seemingly benign, but are actually security bugs.

Security bugs are hard to identify and can have catastrophic impacts because they

allow someone with malicious intent to take over a system. This situation is made

worse by intentional government-to-government (or commercial) attacks known as

cyber warfare.

This problem is compounded because a single bug in a system is often all that is

needed to take over the entire system, or at least cause the system to crash or act

slowly or incorrectly. Whether the manifestation of a bug is the result of an inten-

tional attack or a non-malicious bug the results are the same, the system running the

application can perform unexpectedly, lose data, or even crash—all to the detriment

of other applications running on the system.

It is important to qualify ways applications can interact in the system. Appli-

cations can explicitly communicate. This work focuses on subtle interactions that

occur when applications share resources. Resources are the parts of the system which

2

runs the program. Common resources are the CPU, memory, disk and file system,

network, peripheral devices and less tangible things like caches and buffers and even

a systems supply of good random numbers.

Modern OSes are designed to provide policies and mechanisms for resource shar-

ing. Though they are not evident in modern OS design, there are some security best

practices which I draw on for inspiration. First, systems should be compartmental-

ized. That means they should be broken up into fault domains, so when one part

of the system fails, the rest is not effected. There is a fundamental tradeoff OSes

must make between applications sharing the system and isolating applications from

each other’s bad behaviour. Though this idea seems obvious, an application which

is fully compartmentalized in terms of all the resources in the system cannot impact

another application. In practice there has to be connections between parts of the

system, so full compartmentalization is not simple. Modern OSes compartmentalize

some resources naturally, sometimes even taking advantage of hardware based assis-

tance, processes having virtual memory being a good example. Other things such as

CPU and file system are not well compartmentalized. A delinquent process can easy

impact other processes by using too much CPU or filling the file system.

The second best practice is that of the Principle of Least Authority1 (POLA). The

POLA was pioneered in the Multics operating system [6]. The principle says:

Every program and every privileged user of the system should operate

using the least amount of privilege necessary to complete the job. [7]

The modern interpretation of the POLA is to give each part of the system as little

privilege as possible while still allowing it to operate. This philosophy can reduce the

chances of a bug impacting the system as a whole because the part of the system

1Also known as principle of least privilege, and the principle of minimal privilege.

3

where the bug resides may not have the privilege to access many of the resources of

the system.

This dissertation deals with legacy applications. Legacy applications as pre-

existing programs, which still have some importance to their users, but are sometimes

considered out of date in terms of their design. The kind of legacy applications Lind

deals with are large programs written in C. This dissertation does not deal with legacy

systems for which the source code has been lost. In concept this work can be applied

to any programming language, though not directly. C is notorious for its weak type

system and its ability to alter the programs memory in almost any way. Except in

performance critical situations, higher level languages have replaced C as the choice

for implementing new systems because of their memory management features, and

genrally more structured approach to running a program. Some of the features C

programs lack and their related bugs are:

• Garbage collection, or some means to free the programmer from explicit memory

deallocation. Lack of garbage collection causes memory leaks which can result

in denial-of-service attacks.

• A security model which has finer grained control mechanisms than the entire

process and a security model which is not default allow. This violates the

POLA. Default allow refers to the fact that by default most OS functional-

ity is enabled, then if a program wants to, each type of functionality can be

individually disabled.

• Bounds checking on arrays and buffers so that programs cannot write past the

end of the expected memory. Array bounds checking and having an explicit

string type solve these problems; however, unchecked this leads to buffer over-

flow attacks and data and stack corruption.

4

• A means to detect, and possibly recover from, unexpected behaviour, for ex-

ample with exceptions. This encourages the system to be put in an unexpected

state when an error happens but it is not explicitly checked for.

• System APIs constructed with expectation of invalid input and non-concurrent

use. Poorly designed APIs encourage race conditions and bugs.

• Flexible variable scoping options. Scoping options means programmers are not

forced to use only globals or locals.

• Silent integer overflow. When an integer silently overflows this can move the

system to an unexpected state which can cause malfunctions or open new vectors

of attack.

• Typing in variadic functions. Without first class support for variadic functions,

format strings have to be used. This enables format string injection attacks and

bugs from format strings which do not correctly describe their targets.

These problems, and others are discussed in more detail in Chapter 5. Suffice it

to say that the environment in which a C programmer must work is inhospitable and

without a large amount of rigor and knowledge about C, it is easy to unintentionally

write buggy code. This means there are programs containing a large number of bugs,

and OSes which do not fully limit the impact of those bugs. The critical issue is that

legacy applications are still used!

1.1 Problem: Legacy Is Here To Stay

The problem is that these legacy systems are still valuable. They do what they are in-

tended to, they cost a lot to rebuild; however, because of C’s relance on programmer’s

skill legacy systems are more susceptible to bugs and attacks. One way to mitigate

5

System
'VM

'

O
bjects'

Processes'

M
ono'purpose'

Com
ponents'

Size'of'Isola;on'Small' Large'

Figure 1.1: Some common forms of isolation and their granularity. On one end of the
spectrum there are systems which provide fine grained isolation, for example at the
object level, on the other end of the spectrum there are purpose built systems which
are intended to only run one thing.

the impact of an attack on a system is compartmentalization—as long as the isolation

between programs is sufficient. If you can keep the bug contained within the part of

the system it came from, the rest of the system is not at risk.

The key to containment is resource isolation, if legacy applications can be isolated

from the rest of the applications in the system, then the bugs damage can be limited.

However, the default-allow policy which the OS provides to processes is ripe for

impacting other programs on the system.

There are many systems which isolate programs, and there are many resources

which need to be isolated each in different ways. One way to organize isolation

systems is by the granularity of isolation. Granularity refers to the relative size of

the thing being isolated. Figure 1.1 illustrates an isolation granularity continuum

and notes some popular technologies which fall in certain parts of the continuum.

6

It is generally the case that technologies trade-off the isolation of granularity for no

functional properties like performance, memory use, and ease of use. It is generally

the case that as you move to the right of this continuum, the isolation is stronger,

meaning more resources are isolated more strongly, however the cost of isolation also

goes up. For example object-based isolation in a programming language might not

isolate CPU or file system between each object, so they can interact at that level. A

purpose built machine on the other end of the spectrum is expensive but offers perfect

isolation—no resources interact. To shed some light on the costs of isolation, I will

now quantify some of the costs of low-granularity isolation, in this case virtualization.

The overheads and isolation properties of virtualization are well studied [8], so what

is described here is how they compare to process level isolation.

1.2 What are the Costs of Isolation?

This simple experiment focuses on virtual machine (VM) communication. Virtual-

ization is the gold standard in on machine isolation, because the interface a virtual

machine supports is so simple it is easy to multiplex safely. However, that simple

interface also mean that each VM must run a full OS inside and communicate with

other VMs by means of a virtual network. This setup significantly complicates the

software stack. A full OS and file system are run for each VM. Memory and CPU

are statically partitioned, so that internal fragmentation can be an issue. Even hard-

ware interrupts are delivered in a different way. This all means that virtualization’s

isolation comes at a cost.

To assess the impact of virtualization’s isolation on simple timed communication

experiments, I will first established the anticipated overheads associated with com-

munication costs between virtual machines running on the same host. I will then

7

contrast that with simple processes performing the same communication in a stan-

dard OS2. The benchmark runs as a simple server in each virtual machine. The

server is responsible for waiting for connections and, once received, reading a simple

message—which in our configuration of the benchmark, is just an integer value. This

message is then forwarded to another server. This experiment can be thought of a

high precision inter-process ping.

To measure the latency introduced over N hops, I setup N VMs with a server in

each. Each VM forwards its’ message to the next VM in a ring formation, so that

the message eventually returns to the server that originally sent it. The benchmark

measures the time from when the first connection was initiated, to when the message

has travelled through all of the servers and arrived back at the originator.

The benchmark can be run in several different configurations, one configuration in

which all the servers reside on the same VM, and another in which each server resides

in its own VM. Figure 1.2 illustrates these two experimental configurations for N =

3 hops: in Figure 1.2 (a) all of the servers reside in a single VM, in Figure 1.2 (b)

servers are distributed across domains. These two configurations can start to show

us the cost of VM isolation versus process based isolation.

The server program is written in C. Each server process runs in one of two modes:

• Forwarding mode: receives request on a port, reads the message, and then sends

that message to another IP and port.

• Master mode: sends a message once every t seconds to a specified IP and port,

then waits for the message to come back. The master keeps the time difference

from the beginning of the send to the end of the receive. This time difference

is the round trip time (RTT) in the system, and what is measured by the

benchmark.

2The content of this section is published in [9].

8

Figure 1.2: A master, M, and forwarders, F, in (a) a single domain
configuration, and (b) cross domain configuration. Both configurations
are for 3 hops.

A set of programs written in Python takes the role of a supervisory system. One

program reads a configuration from a file or remote location and then sets up the

server processes that should be running on the VM in which that particular instance

of the supervisor program is running. The supervisor makes sure that processes

run without aborting from unnatural causes, and aggregates their output and data.

Supervisors run on each VM in the experiment, and coordinate with a central server.

The benchmark was run on HP ProLiant DL320 server with a dual core Intel

Xeon 3000 series processor and 4 GB of memory. Three platforms were used: two

different virtualization platforms and Linux. The Linux distribution used was CentOS

5.2 [10] on all the real or virtual machines. To comply with EULAs and because these

results do not serve as a definitive comparison of virtualization platforms, we have

anonymized their representation. To control for variability TCP network settings like

TCP Nagle were disabled, the experiments were run on dedicated empty networking

hardware and the machines had all but essential services and programs disabled.

The communication micro-benchmark was run 50 times, with 10,000 iterations in

each run. The benchmark was set to make one hop, so it would just comunicate with

itself. The resulting data set is rendered as a mesh diagram in Figure 1.3. The x-axis

9

Figure 1.3: A mesh diagram of the round trip packet times. Iterations
on the y-axis, experimental runs on the x-axis, and response time on
the z-axis. Note the memory between runs at certain iterations.

of this diagram represents the run number, the y-axis represents the iterations of each

run, and the z-axis represents the time a single iteration took.

This data was rendered as a mesh diagram to show some of its interesting prop-

erties that are not present in the non-virtualized runs. The first artifacts of interest

in Figure 1.3 are the horizontal lines that appear at regular intervals. Those lines

are specific iterations of the experiment which took longer. They tended to be about

twice as long, moving from approximately 50 µsecs to 100 µsecs. This shows that

after a certain number of operations, the system takes longer to perform the timed

operation for an iteration.

The second artifact of interest is the larger spikes that occur diagonally across

runs. These spikes tend to be about 4 times slower than the regular runs. An

interesting feature of these artifacts is that they occur between runs, and of further

10

consequence for testing scenarios, the pattern of these spikes reveals that the system

has a memory between runs.

To further diagnose origins and possible ramifications of these patterns, two more

micro-benchmarks were added to the experiment. These are specifically designed to

establish characteristics of networking code and system calls in general. In these

benchmarks all the networking code from our timed section was removed. In the first

benchmark I left no system calls in the timed region, in the second benchmark I placed

a single system call in the code where the networking was occurring. The system call

used was a puts call, writing a simple string to the standard output stream.

Benchmarks such as these, with no networking, provide insight into the artifacts

described above. When all the system calls were removed the results had no artifacts

on any platform. When the non-networking system call is added in, the horizontal

lines reappear. Upon closer inspection, the lines are there on every platform, but

on the virtualized platforms they are much larger. I hypothesize that these lines are

buffer flushes from the process’s standard output buffer. That would account for their

pattern and regularity. A buffer flush is also likely to be an operation that would take

longer in a virtualized environment.

Finally, in the benchmark where the networking call was added back into the code,

the diagonal patterns reappear in the virtualized environments. This indicates the

networking code is the cause of the diagonal lines. This also can likely be explained

by buffers in the networking system calls.

Table 1.1 shows some summary statistics from the runs of the benchmark. All

the runs were similar in distribution, though VM2 was more variable. Although VM2

was on average slower than VM1 and Linux, it actually finished its runs before VM1.

The slowdowns can be attributed to areas of code in the experiment that were not

timed, such as the sleep and reset which happens between runs. In this experiment,

11

Platform mean std. dev. min max
Linux 54.40 µsec 5.05 µsec 52 µsec 421 µsec
VM1 50.36 µsec 5.53 µsec 32 µsec 269 µsec
VM2 81.85 µsec 30.82 µsec 74 µsec 2036 µsec

Table 1.1: The microbenchmark running on three different platforms:
Linux and two modern virtualization platforms, VM1 and VM2 respec-
tively.

12

in terms of timing VM1 behaved very closely to Linux where as VM2 was slower and

more variable.

In the case of this workload and these test platforms, the choice of virtualization

platform changed the magnitude of the results and their variability. In the next

section I will show an experiment where virtualization has a completely different

effect.

1.2.1 Quantify Costs with a Web Server

Figure 1.4: Histogram of response times of lighttpd running on single Linux machine.
The x-axis is the response time, and the y-axis is the frequency of response at that
time.

This third set of experiments is intended to help relate the above results to a

more realistic scenario. These experiments record the response times for several

configurations of lighttpd [11], a popular lightweight web server.

Using the same measurement framework from before, HTTP GET requests were sent

to lighttpd, then recorded the time for lighttpd to respond with a 44 B index.html

file. The experiment was run on the same systems already mentioned, and three

configurations were tested:

Single physical machine: client and server were run on a single Linux machine.

13

Figure 1.5: Histogram of response times of lighttpd running on two Linux machines.
The x-axis is the response time, and the y-axis is the frequency of response at that
time.

Two physical machines: client on one machine, server on the other. The machines

were connected by a gigabit network on a switch with no other equipment.

Virtualized: client and server in different virtual machines on the same physical

machine.

In these experiments the test setup was run 1000 times. Figures 1.4, 1.5 and 1.6

show histograms of the result of these three configurations.

The histograms highlight an interesting artifact of the virtualization. Figure 1.4

shows the plain Linux instance of the experiment on one host, which produces a

bimodal distribution. Similarly, Figure 1.5 shows the same test spread over two

physical hosts, also producing a similar bimodal distribution shifted to the left. As

shown in Figure 1.6 in this experiment the virtualization actually significantly changes

the distribution of the results. Furthermore, this change is not just a linear shift of

the results, but an actual change in the shape of the distribution when the web server

is virtualized in two domains on the same physical host.

Virtualization changed both the magnitude of the data, and the distribution. This

quantification allows us to more carefully consider the ways in which tests such as

14

Figure 1.6: Histogram of response times of lighttpd running on two virtual machines
on the same physical machine. The x-axis is the response time, and the y-axis is the
frequency of response at that time.

these will map into real systems at scale. These experiments do not indicate that

virtualization always makes systems run slower on all operations, but that certain

operations do take much longer. The degree to which a virtualized deployment differs

from a physical system and processes is dependant on workload characteristics, and

does not scale linearly from the physical case. Not only does virtualization’s isolation

make the system slower, but it also makes the system’s execution more irregular.

This form of coarse grained virtualization is here to stay, as the benefits of isolation in

cloud computing scenarios far outweigh the costs of these overheads and irregularities.

Given this new norm, we are now faced with the question: what are the costs and

benefits at other points along the isolation spectrum?

Virtualization is just one part of the isolation spectrum. I will discuss other froms

of isolation in Chapter 5. All make tradeoffs in the isolation granularity space. Large

granularity isolation like virtualization has its place. In this dissertation I explore a

novel approach to a new form of fine grained isolation, which works at the process

level.

15

1.3 Response: Sandboxing Legacy Applications

In this dissertation I introduce a prototype system called Lind. In Old Norse, Old

High German and Old English a “lind” is a shield constructed with two layers of linden

wood. Linden wood shields are light-weight, and do not split easily, an appropriate

metaphor for a sandboxing system which employs two technologies. The goal of Lind

is to run untrusted binary applications in a safe and light-weight manner, so that

they are isolated from the rest of the programs on a system.

Lind is a application sandbox, a runtime which controls how an application runs

and accesses the system that it runs on. Sandboxes control applications by restricting

them in some way, then applying a policy to their interactions with the systems. Most

sandboxes are for specific languages and operating systems (OSes), where as Lind is

designed to run compiled binary applications on many platforms, all while keeping

C’s non-functional characteristics like memory footprint and performance intact. This

places Lind in a unique location in the isolation granularity spectrum. Lind makes

containment and the POLA first class citizens in its design. Lind’s resource access

is controlled through flexible polices, allowing a per-application policy approach to

building systems. These all combine to make an environment in which it is much

harder to unintentionally make a bug that negatively impacts the underlying system.

1.4 Overview

In the rest of this dissertation I will discuss show Lind was built, and evaluate its

effectiveness as a proof-of-concept implementation, reflect on other similar systems,

and discuss how Lind could be made better. Chapter 2 details Lind’s dual sandbox

design and implementation, and why it is essential for the development of a safe, fast

and lightweight sandbox. Then in Chapter 4 I will discuss a criteria for evaluation

16

and evaluate Lind’s proof-of-concept implementation. Next, Chapter 5 discribes other

technologies which isolate parts of systems and reflects on how Lind relates to those

technologies. Finally, Chapter 6 discusses some ways in which my proof-of-concept

implementation could be improved, and then concludes.

17

Chapter 2

Design and Architecture of Lind

The goal of Lind is to run applications in a isolated and lightweight manner. This

section describes the design goals and requirements of Lind, and then examines the

design choices for our proof-of-concept implementation in the context of some best

practices when building secure systems.

2.1 Design and Requirements

The design goal for Lind is to provide a sandbox where a legacy C program can be

better isolated from the rest of the system, while having minimal impact on workflow

practices and performance characteristics. Specifically, we want to make it easy to

port legacy C-based applications to Lind, without imposing penalties in terms of

execution throughput, and resource utilization, such as memory and disk.

The basic assumption that users make when running a program in a sandbox is

that it will not harm their system. That is the basis of the isolation requirement

and also a key factor in the effectiveness of Lind. Users will not (at least should

not) run code if it cannot be guaranteed to not harm their systems. Unfortunately,

there is no way to guarantee programs do not have flaws or backdoors in them, so

18

we have to assume the programs could harm the system. These programs are called

untrusted, because we cannot guarantee they will not harm the system. Programs

could harm the system directly by reading or modifying state, for instance password

files or by modifying the kernel, or harm it indirectly by slowing the system so other

users can not use the system effectively or at all. Isolating memory and file systems

is referred to as spatial isolation. Isolating programs so they cannot impact the per-

formance of one another is called temporal isolation, or more commonly performance

isolation. One application being able to slow down or stop other applications is an

undesirable trait for the system because it leaves the system open to denial of service

attacks and resource exhaustion attacks, hence, performance isolation is an important

requirement.

The speed at which a program is executes useful work, called throughput, is impor-

tant to every computer system. Adding the isolation properties discussed above can

be done when a system is sufficiently simple. The Repy sandbox (discussed next),

is a good example of that simplicity; however, applications that push the bounds

of hardware cannot accept a major performance impact to be made “safe”. For in-

stance, cryptographic or scientific calculations can operate on long time scales, and

imposing the 10 times overhead simply makes a system infeasible. This is one re-

quirement that distinguishes Lind from other systems, our final requirement is to be

lightweight. Specifically, to impose a low overhead both in terms of memory and

execution throughput.

As I will discuss in more detail in Chapter 5, the heart of any solution for safe

computation is a sandbox. A sandbox is an environment that can run programs while

restricting their actions. Lind is a prototype architecture for a sandbox to satisfy the

isolation and performance requirements described above. Like most sandboxes, Lind

performs two key functions: computation and operating system access. For computa-

19

tion, Lind leverages Google’s Native Client (NaCl) execution environment [12]. NaCl

allows the efficient execution of legacy code in the form of x86 and ARM binaries

that are built with a lightly modified compiler toolchain. For operating system ac-

cess, Lind provides a subset of the POSIX API which is sufficient for many programs.

This API is constructed using the Repy sandbox [13]. A detailed discussion of other

sandboxes and isolation technologies can be found in Section 5.1.1.

2.2 Native Client and Seattle Repy

Efficient execution and providing a broad array of system services are the two goals

of the Lind sandbox. To achieve these goals, the prototype implementation of Lind

uses two sandboxes running in parallel: Google’s Native Client (NaCl) [12] for run-

ning arbitrary native applications efficiently, and the Seattle Project’s Repy Python

sandbox [13] for running a library OS. The term library OS was coined by Porter et.

al [14] and describes a system where the bulk of an operating system is implemented

as a user-level library instead of in kernel space. To help shed some light on these

sandbox choices, and why each makes a unique contribution to Lind, I will describe

NaCl and Repy in turn. Both are covered in more detail in Sections 5.4.1 and 5.1.1.

A native application is one that is compiled for a specific hardware platform.

For example, a C program compiled by the GCC compiler for an x86-64 machine

is a native application; it is in a format that is native to the processor. Native

applications are fast, and they can even be customized further by having embedded

assembly instructions in them.

Software Fault Isolation (SFI), pioneered by Wahbe [15] et. al, is an alternative

to hardware memory protection for running two untrusting programs in one address

space. SFI restricts the execution of native applications so they cannot execute (write

20

or jump) outside a “fault domain”; however, unlike virtual memory address spaces,

transfer of execution between fault domains is fast because there is no hardware con-

text switch involved. SFI is able make execution safe by restricting which instructions

can be executed, so control flow is restricted to a region of memory. The original mo-

tivation for SFI was to load two programs into one address space, but not allow them

to interfere with each other except via a specific interface. SFI is described again in

more detail in Section 5.4.1.

In modern OSes, system calls are the means by which all resources external to a

program’s memory and computation are accessed. NaCl is a modern implementation

of SFI [12]. NaCl’s intent is to let web browsers safely run untrusted—computationally

intense—native code. Unlike Wahbe’s SFI implementation, NaCl is not focused on

running two programs in one address space, but rather executing one untrusted pro-

gram while disallowing it access to the operating system in any unforeseen way. Put

differently, NaCl is designed to run one untrusted program and one trusted OS gate-

way in the same process. Games, 3D and sound- and image-processing, are all cate-

gories of web applications that benefit from deployment in NaCl.

Instructions in x86 have variable width. That makes it very hard to assess, for

any given address, if a verifier is looking at the start or middle of an instruction.

One of NaCl’s techniques for building verifiable x86 code is to impose an instruction

alignment pattern. NaCl makes use of a modified version of the GNU GCC compiler

to produce verifiable native code for x86, x86-64 and ARM. Because of the restricted

subset of native instructions NaCl uses, it can formally verify that the program can

never violate the sandbox. Verification of code happens as it is loaded into memory,

then the code is marked readonly so it cannot be changed by the program. The

sandbox guarantees the program can never write to memory outside the sandbox or

allow the control flow to move outside the sandbox without first passing through a

21

trampoline which the system controls. A trampoline is an area of memory where

once the control flow passes though it the control is guaranteed to be held by NaCl

and not the executing program. NaCl can run most programs; however it presents a

different system call interface from a POSIX system. The system call interface is that

of JavaScript run in the web browser. The program has access to the web browser’s

DOM and functionality, but the actual system API NaCl presents is very limited,

with only simple file operations, and no networking except those provided by the

JavaScript interface. These abilities are only satisfactory for simple applications, and

quite often significant effort is required to port an application to NaCl as is evident

by the existence of the NaCl-ports project [16], a collection of pre-ported software.

The way Lind safely expands the NaCl system interface is by using another sandbox

which can safely access system resources.

Restricted Python (Repy) is the sandbox Lind uses to safely access system re-

sources; effectively, Repy acts as a system library for Lind. Repy uses a restricted

subset of the Python language and provides its own system API. Unlike NaCl, Repy is

a language-based sandbox. Repy has a simple system API to limit its attack surface,

and allows: private per-application file access, TCP- and UDP-sockets, threading and

locking. These services are provided in Repy version 2 which has a simple API of

only 34 calls [17]. 34 calls is particularly small when compared with the 311 system

calls in Linux 2.6 x86-64 [18]. Repy uses a policy file to describe rate limiting and

API restrictions for each program.

Repy was developed as part of the Seattle project [13], and is used to allow devel-

opers to run programs on machines which people from all around the world volunteer.

Since the machines are the volunteer’s, safety is of the utmost priority. Volunteers

will not donate resources if there is a chance their machines will be compromised.

As of 2012, it is estimated that Seattle has a deployment of 10,000 machines (J.

22

Cappos, personal communication, October 15, 2012). Seattle’s primary use is for

education [19–21], security [13,22] and distributed systems [23] research.

2.2.1 Isolation Model

It is important to describe the assumptions of Lind precisely, to best define and

evaluate the isolation Lind provides. The Lind isolation model is similar to most

sandboxing technologies. It is partially based on the Seattle threat model detailed

in [13]. Put simply, a program running inside of Lind should not be able to negatively

impact the system on which it is run.

An application has to ask the system to perform privileged operations on its

behalf. The goal of Lind is to restrict a program to some subset of those privileges.

The bug or attacker might try to have the system execute privileged operations that

were not intentionally exposed by Lind. When a bug causes these operations it may

gain access to parts of the system that has information it should not have access to,

or to cause a denial-of-service for other applications in the system. Lind does not

attempt to stop the bug from performing malicious acts on other systems, though it

can help prevent some kinds of malicious acts with a well crafted policy. For example

a policy forbidding network connections could prevent spam delivery.

Lind runs arbitrary binary code inside the sandbox, which may accept any input

data. The program does not have access to the underlying system except through

the sandbox.

2.3 The Lind Dual-Sandbox

To provide native computation and safe access to the system, Lind combines NaCl

and Repy. As depicted in Figure 2.1, untrusted programs are run in NaCl, as before,

23

but access to all system-resources is diverted to a Repy program. This program is

responsible for accessing the system on behalf of the program, it is called the Lind

Library OS.

As depicted in Figure 2.1, the two sandboxes have a communication channel. To

service a system call in NaCl, a stub routine marshals its arguments into a text string,

and sends the call and the arguments through the channel to Repy. The Library OS

then executes the appropriate system call, marshals the result and returns it through

the channel; the result is eventually returned as the appropriate native type to the

calling program.

Lind is designed to minimize its footprint within the trusted code base (TCB)

of these two sandboxes. To achieve that, most of the Lind code is run from within

the two sandboxes, the modifications to the sandboxes themselves (and therefore the

TCB) was extremely small, and is discussed in Section 3.4.

The dual-sandbox mechanism completes the achievement of the isolation design

goals through two features. First, the dual-sandbox ensures that all code can modify

only device state, interact with devices, or interact with the outside world through the

new trusted operating system interface. Second, the customizability of the interface

ensures that the system can only: modify state, interact with devices, or interact

with the world at a rate and in a manner specified for the application. For example,

any attempt to send spam or execute a denial of service attack would trigger limits

on resource consumption and/or allowable addressing, and would be prevented.

The dual sandbox also makes the construction of Lind simpler. The complex part

of Lind is the Library OS which runs in Repy; however, Python is a very powerful

language, so it significantly simplified the construction of Lind. Even though Python

is considered “slow” by some, the internals of an application in Lind are run in NaCl,

a very high performance environment. This balances the performance of the system,

24

with the ease of implementation and maintenance of the Library OS component of

Lind.

Most importantly, this particular design and architecture for sandboxing ensures

the programs are portable. Programs running inside Lind are written to work against

a standard POSIX glibc interface. The Lind runtime is strictly user-level and de-

signed to work on many different platforms including Linux, MacOSX and Windows.

There is more discussion about sandboxing and portability in Section 5.4.1.

Sandboxing also ensures performance isolation. It is used to limit resource con-

sumption, both of computational resources (CPU, memory) and external resources

(disk I/O and space, network bandwidth). The interposed system calls rate limit

access and total consumption of each class of device on a configurable basis. CPU

and memory limits are enforced on a per-process basis.

Finally, this kind of sandboxing ensures that the lightweight goal is met. Overhead

for the Lind system is low because the sandbox only incurs overhead when there is a

system call; Lind uses a native interface for execution, allowing CPU- and memory-

intensive applications to run at speeds that are equivalent to NaCl and near native

speed.

2.3.1 Addressing the Portability Goal

For Lind, portability is ultimately determined by the portability of the two sandboxing

technologies used. Repy is very portable. Python itself runs on many platforms and

architectures, and Repy has been shown to run under Windows (XP or newer), Mac

OS X, Linux, BSD variants, and on many portable devices (Nokia devices, Android

phones and tablets, iPhones/iPads). A large proportion of Repy code is dedicated to

presenting a uniform interface to the sandbox across all these platforms.

NaCl runs on Windows, Mac OS X and Linux, on x86, x86-64 and ARM platforms.

25

Untrusted
Binary

Application

Native Client Sandbox

Repy

OS Resources

RPC

Safe access

Figure 2.1: The architecture of Lind. System calls are intercepted in NaCl, and sent
via a RPC to Repy where they are serviced.

26

Untrusted Binary Application

Native Client

Web page / JavaScript

Web Browser

OS Resources

Vs.

Untrusted Binary Application

Native Client

Library OS

Repy

OS Resources

Figure 2.2: The software stacks of NaCl in the Browser and Lind.

Programs compiled for NaCl can use NaCl’s PNaCl (Portable NaCl) format, which

allows a single executable to be used for all three platforms.

2.4 Lind Compared to NaCl

NaCl was originally designed to be used with a browser, to run computationally-

intensive programs under user control and at user initiation in a secure environment.

It has been adapted it suit the Lind requirements. This adaption has resulted in no

changes to NaCl itself (as detailed in Section 3.1), and a significant re-engineering of

the environment in which NaCl programs and NaCl itself are run.

The differences within the systems are shown in Figure 2.2; the stacks are shown

side-by-side to highlight their identical functions. The browser plays two fundamental

roles in the standard NaCl system: as an application controller (more precisely, as

the actuator for user application control) and as an OS sandbox. Lind lacks both a

user and a browser; hence these roles are played by other actors. The role of the user

in Lind is played by the remote server and it actuates through the library OS. The

role of OS sandbox is played in Lind by the Repy sandbox. One way, therefore, to

view the Lind system is then as a generalization of the NaCl environment. It would

be possible to build and run a web browser in Lind.

27

2.5 Customizing the Repy Sandbox

A persistent weakness of sandboxing technologies is that they have fixed policies, in-

dependent of the applications which run in them. No access to the local file system is a

common policy. However, in practice, many applications need restricted, customized,

application-specific access to various local resources. As a trivial example, a solitaire

program needs to update a score file, but should touch no other system resources. For

Lind, and in particular to support the customized networking described in Section 3.1,

sophisticated, highly-customized access to the network is required on an application-

specific basis. Further, the computational resources of a given Lind application must

be tightly-controlled on an application-specific basis using a mechanism called secu-

rity layers [13]. A security layer is a reference monitor that programmatically blocks

access to the system resources consumed by the application. When Lind is setup, it

instructs the Repy sandbox to insert the appropriate security layers which in turn

grant access if requests fall within the local policy permissions. Concretely, a Repy

security layer can block access to a set of IPs / ports or prevent file system access

selectively or altogether [13].

Applications in Lind are subject to network bandwidth restrictions set in the policy

file and enforced by Repy. These restrictions allow control over networking resources,

such as incoming and outgoing bandwidth available to the application. A security

layer can be used to customize the resource controls for an application, like modifying

the upload and download speeds independently. In addition to throttling network

speeds, the networking API is also controlled by Lind, which disables networking calls

not required by the application. Unintended network calls can therefore be caught

and disallowed by the Lind runtime. Furthermore, restrictions are also placed on the

ports available to the application. Ports must be explicitly listed in the applications

restrictions file to be available ensuring that network traffic may only be processed on

28

ports explicitly stated to be usable. In addition to restricting the ports, Lind restricts

the number of connections allowed by an application. This stops the application from

being allowed to flood the network with traffic and in some cases fill a NAT-enabled

router’s NAT translation table.

All settings are set to their most restrictive by default, then the policy file lists

explicit exceptions; for example, file-system open and read are allowed for the OS

server. The local policy file makes the same restrictions for the entire Lind runtime,

and the application-specific policy is accepted only if it will not violate the global

restrictions for the Lind runtime.

The dual-sandbox enforces the granted policy through a combination of tech-

niques. The appropriate system call checks for network and file system permissions.

Lind enforces the memory limits by terminating the application if it goes above the

allocated memory. Lind enforces the CPU limits by suspending the process (with

SIGSTOP on Mac and Linux) when the application approaches the allotted amount

of CPU time and then resuming it later. Lind enforces bandwidth constraints by

delaying traffic.

Below is an example of a policy file for Repy (and Lind):

resource cpu 1.0

resource memory 2500000000

resource diskused 1000000

resource events 1000000000

resource filewrite 100000

resource fileread 1000000

resource filesopened 5000

resource insockets 1000

resource outsockets 1000

resource netsend 100000

resource netrecv 100000

resource loopsend 10000000

resource looprecv 10000000

29

resource lograte 100000000

resource random 100000000

resource messport 9995

resource messport 9996

resource connport 9995

resource connport 9996

call gethostbyname_ex allow

call sendmess allow

call stopcomm allow

call recvmess allow

call openconn allow

call waitforconn allow

call socket.close allow

call socket.send allow

call socket.recv allow

call open arg 0 is junk_test.out allow

call open arg 1 is rb allow

call open noargs is 1 allow

call file.__init__ arg 0 is junk_test.out allow

call file.__init__ arg 1 is rb allow

call file.__init__ noargs is 1 allow

call file.close allow

call file.flush allow

call file.next allow

call file.read allow

call file.readline allow

call file.readlines allow

call file.seek allow

call file.write allow

call file.writelines allow

call sleep allow

call settimer allow

call canceltimer allow

call exitall allow

call log.write allow

call log.writelines allow

call getmyip allow

call listdir allow

30

call removefile allow

call randomfloat allow

call getruntime allow

call getlock allow

The policy file specifies the rates and limits the application will have access too, as

well as which of the system calls are allow, and if needed what parameters can be used

in those system calls. The Repy policy langauge is powerful, but it is not explored

here because this work does not deal with determining policies, only enforcing them

as they are stated.

This chapter identified the design goals and architectural decisions used in the

initial Lind prototype. The dual sandbox described provides the isolation necessary to

contain native applications, while still providing a high-level environment to build OS-

like functionality. Policies are enforced according to application specific needs. The

next chapter provides implementation details for the proof-of-concept dual sandbox.

31

Chapter 3

Implementation of Lind

A dual sandbox can be implemented in one process, or in two separate processes,

either as both sandboxes in one process, or one in each process. Two processes

gives extra protection from the architecture’s hardware virtual memory protection,

and any facilites the OS might provide — for example the chroot jails described

in Section 5.1.1. The tradeoff made in a two process model is that there is a higher

latency and overhead when communicating between the two processes. Using a multi-

process model is strategy used in some user level systems to enhance security, for

example the Chrome [24] web browser.

Lind runs its two processes in tandem: a NaCl instance that runs as a child of a

Repy Python interpreter. Inside the Repy Sandbox, a program runs as the Lind oper-

ating system persona. This program services requests for operating system resources,

and launches and monitors a NaCl instance running the untrusted application. Inside

of NaCl, Lind applications use a modified version of glibc to redirect the standard

system call interface through an Unix Domain Socket to the OS server. The OS

server then services the system calls using Repy’s facilities, then passes the results

back to the modified glibc satisfying the original request. The only change needed to

32

the user’s program is that is has to be recompiled using the NaCl compiler (which is

a slightly modified version of GCC), then be dynamically linked with the Lind glibc

library. NaCl also provides a glibc interface; however, Lind’s modified glibc provides

a much richer system interface than NaCl’s glibc because it can exploit the properties

of the Repy sandbox.

Repy does not provide an interface to launch system subprocesses, so launching

NaCl from an unmodified Repy would not be possible. To add this functionality a

new Repy system call was added, safe execute, to allow Repy programs to launch

NaCl instances. safe execute uses a process similar to the NaCl sel launcher

used in browsers to fork a new process with the program and arguments. When

NaCl starts, it establishes an Inter-Module Communications (IMC) connection to

communicate, these channels are opened and then handed over to the Repy program.

IMC connections are reliable datagram connections, which present a socket interface

to the programmer. The Repy program effectively controls the NaCl instance: the

Repy program is able to query if the NaCl instance is still running, get its IMC

channels, read and write to those channels, and kill the NaCl instance. All other

operations are blocked from the Repy program. Using the safe execute mechanism,

a Repy program can act as an OS. Reproducing OS functionality at user-level is

sometimes called a “Library OS”, the next section discusses library OSes in more

detail. The library OS Repy program runs an RPC server that allows it to service

system calls which come from the NaCl instance.

Lind can be thought of as being structured like the classic Bridge design pattern

[25] as Lind provides an abstract OS model to NaCl, which is derived from the Repy

API calls.

33

3.1 The Life of a System Call in Lind

Conceptually, every system call in Lind is executed the same way. This is illustrated

in Figure 3.1. The call is marshalled by a custom build of glibc, then forwarded to

the Repy OS server, where it is dispatched to a handler. Forwarding to the Repy OS

server is done by an RPC call over Unix Domain Sockets. Details of this path are

discussed in the following sections.

3.1.1 Implementing Each System Call

Linux has a few hundred system calls; however, many are obscure. In our implemen-

tation, the system calls made by glibc broadly fall into three categories. First, system

calls that are left alone and allow to pass through to NaCl. These are calls like brk

for allocating memory. Second, calls implemented through the Library OS mecha-

nism described above, such as open or getdirents. Third and finally, calls that must

be faked because they have no direct analog in Repy—55 system calls for the Lind

prototype. For instance, file system permission related calls were faked because Repy

programs do not have access to the global file system or any sort of file protection

mechanism. Similarly, Repy has no size function (in the form of stat) for a file, nor

does it support directories.

In Lind, to provide these calls it emulates what an OS might do. For example, to

emulate directories, the on-disk file name of a file is actually a unique ID, and then

a mapping table is used to map paths and filenames to the on disk unique file. This

mapping table is persisted on each state changing operation. Lind comes with a fsck

like tool to reconcile irregularities in the metadata file, and a tools for migrating data

in and out of Lind file systems. Other functions simply return dummy values or errors.

For example, getpid returns a hardcoded PID (since getpid is not allowed to fail and

34

TCB

Sandbox
NaCl Process

Untrusted
Application

Untrusted
Glibc

Trampoline
TCB

Sandbox
Repy Process

Untrusted Library OS Server

Repy API

User
OS

IMC Socket

fopen()

open()

RPC

RPC

Repy Policy

lind_rpc()

pack()

unpack() openfile()

dispatch()

lind_open_syscall()

file

Figure 3.1: The path of a system call during execution. In red, a program tries to
make an disallowed system call and is blocked by NaCl. In blue, a successful open
system call is shown. Fopen is called in the program, which leads glibc to make an
open system call. The open system call is replaced with a call to lind open rpc, that
makes a Lind RPC call. The call’s arguments are marshaled, then sent via an allowed
write call on a pre-established IMC socket. In Repy, the OS server is waiting on the
other end of the IMC socket. When the message arrives it is unpacked and the system
call is dispatched by the Lind dispatcher to an implementation of the open system
call. The dispatched calls passes though a module that adheres to the Adapter design
pattern [25], and converts the arguments from the native C format to exactly what
the Library OS expects. That implementation consults the file table for a free spot,
then makes a call to the Repy API’s openfile function to get a file object. The open
file object is stored in a table, while the file handle number or error number is passed
via a return RPC back to glibc finally completing the original fopen call.

35

programs don’t need to know their PID), and some of the fields of fstat and stat

have reasonable dummy values in them. Other functions that are not implemented

just return ENOSYS and expect the programmer to deal with the error.

Repy API Name Difference between POSIX system or Python analog
File system

openfile Opens files, not directories, name must be in [A-Za-z0-9]
file.close
file.read Rate limited, no cursor
file.write Rate limited, no cursor
listfiles Get files in local directory, no subdirectories
removefile Does not remove if open

Network
gethostbyname less configureable DNS
getmyip get the single external IP of this machine
sendmessage Send UDP datagram, rate limited
openconnection Destination and port can be limited
socket.close
socket.recv rate limited TCP receive
socket.send rate limited TCP send
listenforconnection Port is limited
tcpserversocket.getconnection rate limited
tcpserversocket.close
listenformessage rate limited
udpserversocket.getmessage
udpserversocket.close

Threading
createlock
lock.acquire
lock.release
createthread rate limited
sleep does not wakeup early
getthreadname

Miscellaneous
log replaces print statements
getruntime no clock time, just seconds since program start
randombytes rate limited hardware generated random string
exitall Stops all threads and exits program
createvirtualnamespace loads new code safely
virtualnamespace.evaluate(context) runs loaded code
getresources query limits and resources at runtime

Table 3.1: The Repy version 2 system call table.

The isolation of the Repy sandbox is partly due to its simple interface to the

system. Table 3.1 lists all of the system calls a Repy program can make and some

notable restrictions and differences between the standard Python and POSIX calls. To

provide the full functionality of the OS from Repy Lind emulates an OS’s behaviour in

Repy. For some operations like file open, read and write, emulation is simple because

Repy already supports them, though the exact flags and semantics of the calls are

different. For instance, Repy does not provide the abstraction of a file cursor, so to

36

make consecutive read calls in the emulated OS Lind has to keep a logical cursor for

each file handle. However, in Repy other system call analogs simply do not exist.

Repy has no stat call for a file, nor does it support permissions or directories.

Num. Name Implementation
1 noop implemented in Lind
2 access implemented in Lind
3 debug trace implemented in Lind
4 unlink implemented in Lind
5 link implemented in Lind
6 chdir implemented in Lind
7 mkdir implemented in Lind
8 rmdir implemented in Lind
9 xstat implemented in Lind
10 open implemented in Lind and Repy
11 close passed to Repy
12 read passed to Repy
13 write passed to Repy
14 lseek implemented in Lind
15 ioctl Case dependent
17 fxstat implemented in Lind
19 fstatfs implemented in Lind
23 getdents implemented in Lind using files
24 dup implemented in Lind
25 dup2 implemented in Lind
26 statfs Faked
28 fcntl implemented in Lind
31 getpid Hard coded
32 socket implemented in Lind, passed to Repy
33 bind implemented in Lind, passed to Repy
34 send passed to Repy
35 sendto passed to Repy
36 recv passed to Repy
37 recvfrom passed to Repy
38 connect implemented in Lind, passed to Repy
39 listen implemented in Lind, passed to Repy
40 accept implemented in Lind, passed to Repy
41 getpeername implemented in Lind, passed to Repy
42 getsockname implemented in Lind
43 getsockopt implemented in Lind
44 setsockopt implemented in Lind
45 shutdown implemented in Lind
46 select implemented in Lind
47 getifaddrs implemented in Lind
48 poll implemented in Lind
49 socketpair implemented in Lind
50 getuid Hard coded
51 geteuid Hard coded
52 getgid Hard coded
53 getegid Hard coded
54 flock implemented in Lind
55 rename implemented in Lind (Lind specific call)
105 rpc cia implemented in Lind (Lind specific call)
106 rpc call implemented in Lind (Lind specific call)
107 rpc accept implemented in Lind (Lind specific call)
108 rpc recv implemented in Lind (Lind specific call)

Table 3.2: The numbered and named Lind system calls and the strategy used to
implement the call. The name of the system call comes from the POSIX standard.

37

Table 3.2 lists all the system calls that are passed through to Lind, and describes

what is done to service each call. The details of how each call is implemented for

Lind vary widely. To illustrate how the system works Section 3.2 describes the file

system implementation in more detail.

3.2 Implementing the File System in the Library

OS

The core of the Lind file system is the open, close, read, write, getdents, stat, mkdir

and rmdir system calls. These give the program the illusion of a normal file system

even though Repy does not allow directories or access to file attributes, and provides

different semantics for read and write. Below are the C prototypes for these system

calls:

int open(const char *pathname , int flags , mode_t mode);
int close(int fd);
ssize_t read(int fd , void *buf , size_t count);
ssize_t write(int fd , const void *buf , size_t count);
int getdents(unsigned int fd , struct linux_dirent *dirp ,

unsigned int count);
int stat(const char *path , struct stat *buf);
int mkdir(const char *pathname , mode_t mode);
int rmdir(const char *pathname);

When Lind start, the file system does some pre-initialization. Using the Repy

API, Lind reads a file named “lind.metadata” from the local directory. This file

contains packed metadata. That metadata is from previous runs of Lind, and the

data is loaded into the runtime file system data structures. There are three main

data structures: a list of open file handles, and a Python dict of inodes and file

metadata, and a mapping table to go from a file name and path to an inode number.

All these data structures are stored in memory, and written to disk when they are

changed.

38

The open system call is the normal starting point for most file system operations.

Given a path, it will return a file descriptor to perform other operations like read

and write. When Lind receives the open system call, it parses the path, traverses

the path in the inode lookup table. When the Library OS finds the file, it use the

Repy openfile call to get the backing file’s object, it then picks a free entry from

the file handle table, and stores a link to the inode and the file object. If the create

flag is passed, it adds an entry to the inode and inode lookup table, and creates a

new backing file. The backing files are not named the same as the actual files, but

rather just “linddata.001”, “linddata.002” etc. The simple names for the backing files

allows us to store the real file name in the metadata, this is necessary because there

are strict rules about the content of a filename in Repy. Finally, the call returns the

index into the file handle table, or if an error was encountered, an error number to

set the Unix errno value to.

The close system call removes the file handle’s entry from the file descriptor table.

The read and write calls use the file object obtained during open. Repy does not

have the notion of a cursor, the read and write function both take an offset as well

as a size to read or the string to write. A cursor is stored with the other file handle

information, and updated on each read and write.

Getdents traverses the inode lookup table to the directory it targets, then reads

all the entires from there. A Repy listfiles call is not even used since the metadata

stores all that information. Likewise, mkdir and rmdir are just metadata operations

on the inode lookup table.

Stat must return many values as shown in the struct below:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */

39

gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size , in bytes */
blksize_t st_blksize;/* blocksize for file system I/O*/
blkcnt_t st_blocks;/* number of 512B blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

The device code stat must return is based on if the file is a normal file, or one

of a few special files Lind supports like /dev/random and /dev/null. The inode

number stat returns is the real Lind inode number. The file’s mode is stored in the

file metadata, as well as the ownership information. The size of the file is discovered

by reading the entire file. This could be made faster by storing a size in the metadata,

but it is not that frequent an operation. Block sizes are all hard coded. Times are

fake in that they are not the correct wall time, but they are monotonically increasing.

3.3 Building a RPC System for C

Because of the number of system calls that Lind needs to support, and the similar

steps needed to marshal each of them to the Repy sandbox, a program was built

forward system calls. There are a few key concerns for a program like this, that it

is correct for all system calls, and that the RPC stubs it produces are fast. Each

time a system call is made, it has to be marshalled and sent, as the overhead of this

process is added on to every system call it is prudent to minimize the overhead where

possible.

The ideal design in this situation is a zero-copy send (one in which the data is

not copied into a buffer before it is sent. Initially in the implementation of the Lind

RPC, marshalling was a very error prone part of the code. To make development

even harder, debuggers do not work in NaCl, and many ’useful’ calls (for example

printf, and string formatting) do not work at this level because they have depen-

40

dencies on the system calls themselves. Marshalling requires knowing the type and

direction (in or out) of each parameter of each system call. A simple call like dup2

with the signature int dup2(int, int); is not hard. The parameters are two inte-

gers, file handles, and then a return code is passed back out. Whereas, a function

like recvfrom has a signature ssize_t recvfrom(int sockfd, void *buf, size_t len,

int flags, struct sockaddr *src_addr, socklen_t *addrlen);. In order, the arguments

are:

• the returned value is the size received on the socket or 0 for an error,

• the socket file descriptor,

• a pointer to a buffer to write into,

• the size of that buffer,

• any flags that might be needed by the call, as a bit mask,

• a pointer to another buffer that will hold the connection information in one of

several different sized structs (normally sockadder in or sockadder in6),

• a pointer to the size of the connection buffer, that is over written with the new

size after the call.

A systematic approach was needed to deal with the complex and error prone

nature of the marshalling task. To approach the problem, a meta program was built,

that produced the marshalling code. The program’s output is a set of .c and .h source

code files, with RPC stubs, that can be called from the appropriate places. The meta

program was honed over time to produce fast error free code.

To define an RPC stub in the program, the user simply calls a function: syscall(

in, reference, out), the three parameters are lists of parameters, simple in (pass by

value) parameters, then reference parameters, and out parameters. The reference and

out parameters, have extra information in them to describe the type and size of each

parameter, so the program knows how much to copy. This could be a fixed size like

41

sizeof(int) or any expression, for example, one of the other parameters like *addrlen

or any expression like strlen(filename)+1.

For example the dup2 call:

syscall("dup2", [("int", "oldfd"), ("int", "newfd")])

and the recvfrom call:

syscall("recvfrom", [("int", "sockfd"),
("size_t", "len"),
("int", "flags"),
("socklen_t", "addrlen")],

[],
[("socklen_t*", "addrlen_out", "sizeof(socklen_t

)"),
("void *", "buf", "len"),
("struct sockaddr *", "src_addr",
"sizeof(struct sockaddr)")])

The generator uses the writev system call to send the data over the Unix Do-

main Socket. This call takes a vector of (pointer, length) tuples. The writev call

traverses this vector, and copies length bytes from each pointer. This means that the

marshalling only copies the data once (from the vector locations to the other side of

the socket).

The RPC stubs are generated at the start of every build of the system. This

means as the RPC generator evolves, all the system calls are updated. This has made

it much easier to add new features. Once such feature was a strace, which logged

all the calls being made. Another, was a debug mode that dynamically checks the

size of all the reference and out parameters, to ensure Lind does not write into any

memory outside its bounds. Finally, when threading needed to be add to Lind, it was

very simple to add locks to the system calls, so that the data structures could not be

accessed concurrently.

42

Sandbox TCB Lines of Code Changes in TCB Percent Increase
Repy 5866 SLOC 137 SLOC 2.3%
NaCl 138298 SLOC 472 SLOC 0.3%

Table 3.3: Lines of change to the TCB—as counted by SLOCCount [26].

3.4 The Lind Trusted Code Base

One of the goals of our implementation was to minimize changes to the Trusted

Computing Base (TCB). The TCB is the part of the system that must be correct for

the system to operate without being exploited. Table 3.3 shows that the changes to

NaCl and Repy were small. As a result of this Lind has a very minimal impact on the

system’s TCB, and mainly consists of code to allow the launch of a NaCl subprocesses

from a Repy program, and setting up the communication channels between the two.

In NaCl this code was built following several other examples in the TCB. Lind’s

TCB is the native client sel ldr, the NaCl validator and the Repy sandbox. Some

minor additions to both sandboxes were needed to facilitate setup and communication

between them. NaCl was set to use the NaCl Python IMC bindings. A new Repy

system call was added to launch a NaCl instance, setting up communication between

the two sandboxes with Unix Domain Sockets, and code to manage the native code

and shared library path used within NaCl. The largest part of the Lind code is the

system call subsystem, this all runs as untrusted code in the sandbox.

The TCB calculation omits two code bases, the OS’s code, the compiler, glibc and

the Python interpreter and any libraries that either use. Officially all those would

also be in the TCB. In the case of NaCl the OS, compiler and glibc are in its TCB.

In the case of Repy, all those plus the Python runtime and some libraries. Further,

the NaCl TCB could be made smaller, the numbers presented here are all the lines

that are in the official TCB sections of the NaCl code base; however, those sections

include some research code and prototypes that could be removed from a production

build.

43

3.5 The Lind Untrusted Code Base

Sandbox Lines of Code
Library OS 3374 SLOC
Library OS Tests 964 SLOC
GLibC 2529 SLOC

Table 3.4: Lines of code inside the sandbox—as counted SLOCCount [26].

Table 3.4 shows the nearly 7000 lines of code added to Repy and Glibc outside of

the TCB. In keeping with the design goals of Lind, the bulk of Lind’s functionality

stays inside the sandboxes, making it far less likely to be able to harm the system.

3.6 Local File System Integration: lind-fuse

Early in the development of Lind it was found that there needed to be a way to move

files in and out of a Lind file system. At first this was accomplished by a buggy and

hard to use Python script. Later a File System in User space (FUSE) [27] module

was built, which is called LindFUSE. The module allows a developer to mount a Lind

file system in the native machine’s file system. The FUSE module mapped the native

Linux system calls to the appropriate OS server calls. Since Lind already provided

most of the file system interface, and does so in a similar manner to the native one,

all that was done to connect FUSE to Lind was a simple pass-through. LindFUSE

made it easy to copy in large numbers of files, change permissions and even edit files

right in the Lind file system. LindFUSE allows for easier testing of the file system

part of the OS server. Further, any application from the local system can be run in

the mounted directory, and all its file system calls are sent to Lind. Others have used

this arrangement to find bugs in the Lind file system triggered by VIM and MySQL,

even though those applications were never ported to Lind.

44

3.7 Implementation Effort

A lot of the short commings of the Lind prototype are mainly due to a lack of

implementation for the prototype. With more time, the performance of Lind could

be improved, more system calls could be implemented, useful debugging tools could

be introduced, and POSIX standards could be met more exactly. Despite this, the

core Lind prototype is enough to explore the isolation trade-off Lind makes. In newer

versions of NaCl debugging and profiling support have been added.

3.8 Discussion and Reflection

For Lind to work, each type of system call the application makes must be able to

be serviced. Lind currently has many system calls (55+ calls), but still that is only

1/5 of the number of calls in Linux. One observation is that a lot of system calls

are very purpose specific, and most applications make very few types of system calls.

The limited set of calls that are implemented is still able to service a wide variety of

non-graphical programs.

There are some limitations to the current approach that dictate which system

calls can be implemented. First, there is no way in the current Lind model to set up

shared memory. This is essential for system calls like mmap and graphical applications

to work. There are always work around, for example in Xax (described in detail in the

Related Work chapter) graphical applications are rendered by streaming png images

down a socket [28]. Lind does support the mmap system call, but only because NaCl

does, and the mmap implementation only works for shared libraries. It has been to

the benefit of Lind that most applications do a good job of abstracting the platform

the run on, so when calls like mmap do not work they transparently switch to reads. I

will discuss how to do a real mmap implementation in Future Work Section 6.1.

45

Another class of system calls that Lind cannot support are fork and clone. These

are process creation calls. Though the Lind Library OS can spawn new NaCl pro-

cesses, right now there is no way to move data between NaCl processes. The lack

of fork is currently the biggest problem with the Lind architecture. Many com-

mon security minded legacy applications, for example OpenSSH and Apache, use

fork extensively. These missing system calls are discussed more in the Future Work

Section 6.1.

Implementing each system call has been a development burden. There are a lot of

system calls, a lot of flags, and some calls have complex behaviour. Since all the calls

have to be reimplemented inside the TCB, this work is inherent in the architecture

of Lind. In Section 4.3 I discuss the work needed to port Tor, and how long it took

at add some system calls that were not yet implemented in Lind.

3.9 Summary

In this chapter I describe the design and implementation of Lind, a system designed to

provide fast lightweight isolation for untrusted legacy applications. The requirements

I had while designing Lind were for it to have good execution throughput, and low

overhead, as well as strongly isolate applications from the rest of the system. Isolation

can be broken into spatial isolation and temporal isolation referring to changing the

state of resources or modifying the timing or availability of resources.

The enabling technologies for Lind are the NaCl and Repy sandboxes. NaCl is a

SFI sandbox designed to run untrusted web content, Repy is a Python based sandbox

designed to run untrusted distributed systems. Using these sandboxes Lind supports

a threat model where an arbitrary binary application can be provided and it will be

isolated from the rest of the system.

46

The design of Lind uses a dual sandbox, this is to provide a defence in-depth

design, as well as to minimize the TCB of the system, and provide a good environment

for building an OS (Python), while still providing the performance os NaCl for the

application. The defence in-depth is achieved because the two sandboxes are used

in conjunction, so an attacker would have to circumvent both to attack the system.

The minimal TCB comes from the fact that NaCl and Repy can be connected and

all the functionality to provide a POSIX OS can be done from within the sandboxes.

Further, since both Repy and NaCl run on many platforms, so can Lind.

Repy is a very flexible sandbox, and provides the functionality to customize poli-

cies for Lind. This can be simple rate limits per application, or network whitelists,

or even automatic end-to-end encryption of traffic—though that would only work

between two Lind instances.

Concretely, Lind is implemented by connecting an application running in NaCl

with a socket to a Library OS running inside of Repy. System calls are taken from

the application in NaCl, marshalled, and sent to Repy to be serviced. The results are

then sent back to the application. The Lind Library OS is responsible for performing,

emulating or faking each system call, this effectively narrows the wide POSIX system

call API to the narrow, and simple to understand, Repy API.

To simplify the building of Lind I produced a C to Python RPC library which can

take the prototype of a system call, and produce the RPC code necessary to send it

into Repy. To do this I built a simple C code generator. I also created a Lind FUSE

file system, so that Lind file systems can be mounted into the local Linux file system.

Lind achieves its goal of having a small TCB, only modifying 2.3% of the Repy

code base and 0.3% of the NaCl code base. Most of the nearly 7500 lines of code in

Lind runs inside the sandboxes, and thus is not trusted.

47

Chapter 4

Experimental Methodology and

Evaluation

Is Lind worth pursuing as a runtime environment for legacy applications? In building

a sandboxing runtime environment, there are a large set of trade-offs to choose from.

Lind’s characteristics of performance, isolation, security and communication all inter-

play to make it a unique system in this trade-off space. When building new systems

like Lind, all the dimensions of the trade-off space are interdependent. Furthermore,

some of the traditional software engineering ilities are important too. Foremost, the

deployability of Lind, both in terms of where Lind can run, and how easy it is to port

applications to Lind, is critical to Lind’s overall value as a system.

In the isolation model I describe in Section 2.2.1, Lind must run arbitrary binary

code, which may harm the underlying system in any way possible from inside the

sandbox. Further, from the system requirements described in Section 2.1 Lind has to

be fast and light-weight.

In the context of the threat model and requirements presented, this evaluation

answers four questions:

48

• Is Lind practical? Is it a burden for developers to port applications to Lind?

• Is Lind light-weight? That is, how much memory and disk are needed to run

applications in Lind?

• Does Lind slow applications? Specifically, what is the execution throughput

overhead on legacy applications?

• Is Lind isolated? Does Lind isolate legacy applications from the system? Specif-

ically, given the isolation model, does Lind protect a system from the impact of

bugs?

These questions are the most important criteria for the viability of Lind as a

runtime for legacy applications. This evaluation sheds some light on each of these

questions.

4.1 Methodology

Given the important questions above, the follow sections outline how the rest of this

chapter will evaluate Lind.

4.1.1 Fun? Characterizing Ease of Deployment

For any legacy runtime, it is important to discuss how easy it is to get pre-existing

applications to run in it. For a developer, if the effort to port a program to Lind is

not worth the security and portability benefits, those efforts could be better spent

elsewhere. The deployment part of the evaluation will characterize the practicality of

Lind as a platform for legacy applications. This part of the evaluation will describe

a experience porting a large application to Lind.

49

4.1.2 Fat? Characterizing Light Weightedness

Runtime throughput is not the only impact on a legacy application; disk and memory

footprint are also important. Technologies like virtualization allow a user to run

sandboxed legacy applications; however, a VM running an entire operating system

rarely fits in less than 1 GB of memory. Memory overheads like this are prohibitive

if each program has to be run in separate VM to maintain the isolation properties of

a sandbox.

This part of the evaluation will characterize Lind’s memory and disk consumption

through simple micro benchmarks.

4.1.3 Fast? How to Characterize Throughput

Execution throughput is important for a runtime system. Though processors get

faster, and memory gets cheaper, a wasteful runtime can still undo years of progress.

The famous Moore’s law describes processor performance doubling every 18 months.

Given that performance curve, a 10-times slow down can make a modern system run

an application at the speed expected nearly five years ago.

To understand the performance of Lind we have to be able to accurately char-

acterize the execution time and memory overheads it imposes. In Lind, program

execution costs fall into two categories, first, the code’s execution cost over that of

native execution, and second, the increased cost of servicing system calls over that of

a normal OS’s. For Lind, the execution cost is caused by NaCl. The system call cost

is imposed by the communication overhead between NaCl and Repy, and the over-

head of executing system calls in Repy instead of directly in the OS. This evaluation

uses both micro and macro benchmarks to assess the execution throughput of Lind

on several common applications.

50

4.1.4 Flawless? Characterizing and Evaluating Bugs

Claiming Lind reduces the impact of bugs is a claim that cannot easily be proven.

Furthermore, it is likely that because Lind is a research prototype it is full of bugs

itself! This evaluation describes how the design of Lind is inherently more isolated

than running on the native system, and that Lind helps mitigate some classes of

common bugs. This discussion will help show Lind’s potential as a platform, but not

it’s current worthiness.

This evaluation will demonstrate that two types of bugs commonly used as attack

vectors, privilege escalation attacks and resource exhaustion attacks, are not able to

impact systems when programs are run in Lind.

4.2 Evaluation

4.2.1 Experimental Environment

All tests were run in a Virtual Box [29] VM running Ubuntu 10.04 LTS [30]. This VM

is for Lind development, it comes pre-tooled with all the programs that developers

needed to compile and run Lind and programs for Lind. Ubuntu 10.04 is a old

version of Linux; however, it is the standard NaCl development environment so it was

adopted it for Lind. Lind does run on newer Linuxes as well. In this evaluation, tests

were run on many different machines, though always in the VM. The standard VM

configuration is 6 cores, 8 GB of RAM and 20 GB of disk. This was the configuration

used in most of the results, though some were run on other configurations of the VM

on other machines with fewer resources. Like tests were always done on the same

machine, such that results are not compared between machines or configurations.

For metrics involving execution time the system timer (gettimeofday) is used in

C, and the Repy getruntime timers is used in Repy. The timers are of the same

51

accuracy, though the Repy timer gives time as amount of time since program start

instead of Unix time. On Linux systems both the timers are the same resolution, and

come from the same time source. However, the source of the timer was the from the

VM’s clock, not directly the hardware clock.

In the application benchmarks timers were placed at the start and end of the

program. That was generally at the beginning and end of the main function. If a

program exited somewhere else besides the main function, added a timer there as well.

This was done to separate the startup time from the actual program’s runtime. Lind

has not been designed or optimized for startup performance, so it takes a relatively

long time to start Lind—around 2 seconds. This time is mostly spent starting the

Python VM and NaCl. This cost would only be encountered if you were launching a

lot of short running programs with Lind, and could be mitigated by the improvements

suggested in Section 6.2.

Tests were run many times to assure that the results were predictable and repeat-

able. The number of times each test was run is based on the variance experienced,

more variable tests were run with more samples. Some of the tests required setups

that could not be easily automated, those tests were run fewer times.

4.3 Porting Tor to Lind

In this section I will describe the effort needed to port Tor to Lind. Tor runs in Lind

unmodified; however, it took about two weeks of effort to make it run. The effort

was primarily from two things, compiling Tor to run in NaCl, and fixing missing or

buggy system calls.

Tor is an good candidate application for Lind. In Tor’s default traffic forwarding

mode it must accept connections from many untrusted and impossible to trace hosts.

52

Tor is a traffic forwarding system, and is intended to run in the background. Tor

should not consume a lot of CPU memory or disk. Tor’s bug tracker mentions that

there have been remote code execution bugs in Tor. If Tor could guarantee that it is

isolated from the rest of the system, perhaps more people would adopt Tor.

Before I describe in detail what was done, the high level process used to port Tor

was:

1. Using Tor’s autotools script, compile Tor for the local Linux installations.

2. Run Tor in strace to find out what system calls it makes.

3. Look at the autotools script to find out what libraries Tor uses.

4. Download the source code for each of those libraries.

5. Compile each of the libraries for the local Linux installation.

6. Modify each librarie’s configuration system to use the NaCl toolchain.

7. Recompile and install each library into the NaCl toolchain.

8. Configure Tor to use the NaCl toolchain, and compile it.

9. Run Tor in Lind - it will fail because of bugs or missing system calls.

10. Find and fix bugs, implement missing system calls.

To better describe the general process of porting an application to Lind, Figure 4.1

is a flowchart depicting the process used while porting most applications to Lind. First

the application is profiled with strace. That profile will tell the developer which

system calls the application makes and what flags are used. Calls and flags which are

not currently implemented in Lind should be noted, they must either be non-critical

to the application, or implemented in Lind. The Lind manual lists the flags and calls

which are currently supported in Lind, so those can be checked by the developer.

Obviously checking every flag is very tedious, and it would be very simple to write a

script that checks the strace profile automatically; however, since it has been Lind

developers porting programs so far, they have a much better idea of which system calls

53

Start

End

Compile for local
machine

New library
loaded?

Get program
source code

Profile with strace

Does it run? Sort out local
build issues

Modify configure
script to use nacl-

toolchain

All system calls are
supported by Lind?

Don't use
Lind

Is the missing
call critical?

Recompile

Run program in
Lind

Works?

N Y

Y

Y
N

Get library code

Y
N

Y

Note the missing
call, watch for

errors from it later

N

Lind developer
process Missing

system call?

Implement or fix
system call

Bug in call?

Trace program for
problem

Program is
not POSIX
compliant?

Y
Y

N

N

N

Figure 4.1: The process to port an application to Lind. The application and libraries
must be compiled with the NaCl toolchain. While Lind is still in development, if the
program does not work, the system is debugged for missing and buggy functionality.

54

are likely to cause problems. After the profiling the application has to be compiled

using the NaCl toolchain. It is better to first compile the program for your local

machine to work out any kinks in the compilation process before switching to the NaCl

toolchain. To compile with the NaCl toolchain the applications build system must

use the NaCl compiler nacl64-gcc (and sometimes programs like nacl64-ranlib,

nacl64-nm, and nacl64-asm. Most build systems allow the developer to enter a build

prefix which has the system transparently switch over to using all tools with that

prefix in the name. If the application uses shared libraries, those must be compiled

too. Then the application can be run. At this point it should work. If it does not

this is a problem with Lind, and a Lind developer should fix it. The Lind problems

encountered while working on porting applications were mostly small bugs in the

system call implementations or totally missing system calls. For each, the appropriate

action can be taken to fix or implement the call. To make this more concrete, I will

now describe the process of porting Tor, the details of the errors encountered when

porting Tor are discussed in Sections 4.3.1–4.3.2.

4.3.1 Compiling Tor

To get a program to run in Lind, it must be compiled with the NaCl compiler. The

NaCl compiler looks like the regular GCC compiler—because it is just an adaption of

GCC—however the executables are in different locations and have “nacl64-” prefixed

on them. As an example of this prefixing, the command gcc foo.c -o foo would

be replaced with nacl64-gcc foo.c -o foo. All of the commands in the compiler

toolchain have this prefix. Custom paths must also be used, so for example, to get

the Lind system headers instead of the default system headers -I /nacl/include

-L /nacl/lib is used where /nacl/include is where all the .h files from the Lind

glibc were installed and /nacl/lib is where all the NaCl compiled shared libraries

55

.so files are installed. Most build systems are setup so that flags can be passed to

control settings like compiler location, and include locations. To modify a standard

Makefile to compile for NaCl the following could be used:

CC = /lind/sdk/bin/nacl64-gcc

CFLAGS = -c -m64

INCLUDE = -I /lind/sdk/nacl64/include/

LDFLAGS = -melf64_nacl -m64

The trick to compiling larger applications is using their build systems to set these

settings. When a developer wants to compile a program for a different architecture

than what the system is installed as it is called cross-compiling. Most modern build

systems (especially autotools) are created with this in mind, so adding new architec-

tures is pretty easy.

Tor uses a standard autotools-generated build system. To compile it with the

NaCl toolchain, it was simply a matter of adding a new sub-architecture (named

“nacl64”) to the autotools scripts. In every autotools project there is a file named

config.sub that lists architectures and how to find those compilers. Once config.sub

is modified, to compile Tor with the NaCl toolchain the developer just has to pass a

flag to the configure script that makes Tor build for the “nacl64” architecture. Tor

uses three non-standard libraries: libevent, openssl and zlib. These first had to

be compiled separately.

Libevent

Libevent 1.4.14 [31] compiled with the same autotools changes mentioned above.

Libevent was responsible for making some system calls that were not implemented in

the Lind prototype. Those were system calls in the epoll family. Libevent is able to

use the best available native polling mechanism so they were disabled so the epoll

56

system call in libevent would fall back to one of the mechanisms that is already

implemented, the select and poll system calls. Ultimately the select system call

was forced by setting an environment variable that was accessible in Tor.

OpenSSL

Tor uses the OpenSSL library to encrypt its traffic streams. Unlike libevent’s auto-

tools scripts, the OpenSSL 1.0.0e library [32] uses its own hand-coded configuration

system written in Perl. OpenSSL’s configuration is invoked in the same way as an

autotools script; however, it does not have the same options or configuration files.

One option passed to OpenSSL told it to build without assembly optimizations, as

hand coded assembly might not pass the NaCl validator. This assumption was not

tested though. The rest of the options setup a “nacl64” cross compiler environment.

zlib

Tor compresses data streams with zlib [33]. zlib 1.2.7 was compiled from source.

Like OpenSSL, zlib has its own configuration system. Configuration options were

simple; however, there was a problem that stopped the configuration from working.

At one point in the configuration, the script compiles and runs a program to check

the machine’s integer width. When it runs this program, it checks the output on

stdout to see what the bit width of an integer is. In this case it expects a program

that prints “4” to stdout. This check fails in Lind for two reasons, first, the stdout

output of Lind has some debugging messages in it (“welcome to Lind”), second, Lind

programs cannot be run natively, they have to be run by the lind command. To fix

these issues, a --silent flag was added to Lind, so that it can be run with out any

debugging output. zlib’s configuration system was changed to prepend the command

to execute the integer test program with the lind command—which other parts of

57

the configuration already did correctly. This allowed zlib’s build system to correctly

configure and compile itself.

The Lind Library Path

Like the native program loader, to load shared libraries Lind searches a library path.

The library path is a directory where shared libraries are loaded from. Since libraries

are mapped into memory, validated and then executed, this path is treated specially

throughout the system. One difference between Lind and the normal system is that

the library path is only one directory instead of a list of directories. On most linux

machines, libraries are installed to one of many paths, and all paths are searched.

Once the libraries were built, to make them work in Lind the files had to be copied to

the correct Lind library. If this copy was not done, Tor would compile (because the

compiler checks more directories for libraries), but would fail in the program loader

because it would not find the library files the compiler had access to.

4.3.2 Running Tor

At this point, Tor was able to run, but failed with an error. In the version of NaCl

that Lind is based on there is no debugger support, so printf based code tracing is

the best approach to see what is going on. Lind has a verbose option that causes it

to print out all the system calls being made, and their arguments.

The first problem Tor had at runtime was missing configuration and support files.

The location for these is hardcoded into Tor. A Lind file system was constructed, and

the files copied in. The second problem was that libevent was failing on a missing

system call. This was the socketpair system call. The third problem was that

libevent was causing a segmentation fault when it was being initialized. This was

traced back to more missing system calls, and then disabled those event handling

58

modes in libevent. Those modes were device polling mode (using /dev/poll) and

epoll mode (using the epoll system call). All the errors encountered are listed in

Table 4.2.

59

Symptom Error Fix
Stop in loader Lind library path does not have libraries Copy libraries to library folder
Stop in settings parsing Configuration and support files missing Make a Lind file system with needed files
Segmentation fault in libevent
init

Missing socketpair system call Implement the socketpair system call

Segmentation fault in libevent
init

Missing /dev/poll file and epoll system call Disable the device poll and epoll modules in
libevent

Assertion in lseek The argument to lseek can be a long as well as
an integer

Updated lseek call

Assertion in access system call A previously unexpected combination of argu-
ments was passed

Allowed the combination of arguments

listen system call fails Tor requests a listen queue of 128, Linds cur-
rent max queue was 100

Allowed queue length of 128

socket system call fails Tor passes undocumented flag combination in
the socktype parameter

Allow the socktype parameter to contain both
a socket type in the lower bits and flags in the
upper bits

getpid system call fails The return value of the call was set to the
length of the return value instead of 0

Make getpid return 0 on success

Tor can not lock settings file flock system call is unimplemented Implement flock call
flock call fails Tor passes unexpected combination of flags to

flock
Correctly parse unexpected flags

OpenSSL fails to load OpenSSL ca not get random seed from the sys-
tem because there is no /dev/urandom file

Implemented mknod system call with handles
for a few custom files like /dev/urandom and
/dev/null

connect system call fails Tor makes more connections than Repy allows Increase connection limit and free sockets from
10 to 100

Tor can make a certificate Certificate made, but missing rename system
call fails to put the file in the correct place

Implement the rename system call

Assertion failure in stat Tor called stat on a device created by mknod,
this was an untested code path

The device number in the stat struct had to
be correctly serialized

listen call fails Tor binds to port 0, which is a little known
feature that tells the system to bind to any
open port

On bind to 0, find a free port and use it instead
of 0

Assertion in recv Tor requests data from a socket larger than the
RPC buffer

Shrink recv calls larger than the buffer size

Tor fails logging unlink system call missing Added C portion of the unlink call

Table 4.2: Errors encountered while porting Tor.

60

Task Time
Building and reading strace profile 2 hours

Exploring Tor codebase 1 day
Downloading and compiling zlib, libevent and OpenSSL 4 days

Altering Tor autoconf script 2 hours
Setting up environment variables for Tor 1 day

Setting up Tor file system 1 day
Fixing missing system calls and bugs 5 days

Table 4.3: The developer time it took to port Tor.

Table 4.3The total time spent porting Tor was about two weeks. One week was

spent on strace and compiling Tor and the libraries. The other week was spent getting

the Tor file system ready, and finding bugs in the Lind implementation.

The nature of these errors highlights a few things about porting an application

to Lind. First, as Lind starts to behave more like the Linux/POSIX specifications

describe, fewer errors will be encountered. Specifically, the more system calls and

options Lind supports, the fewer problems new applications will encounter. There

is a finite set of system calls (about 300) and functionality, so as the common set

of functionality gets covered, porting will be easier. Second, getting the system call

interface “just right” is hard. Many errors were because of my (or other developers)

misconceptions about how system calls will be used. There are projects on the formal

verification of system calls [34], that would likely be useful to Lind. Third, without

knowledge of the application being ported, that was the case for myself and Tor, a lot

of time has to be spent during debugging to understand how the application works.

In the case of Tor’s 102 KSLOC that understanding took me a while, but would not

for the application’s developer.

One debugging technique which was tried without success was to annotate failing

system calls with an assertion. To do this programatically required looking for all

uses of the ENOSYS return code. If those locations could be found, it would be pos-

sible to track all failing system calls by placing failing assertions near those returns.

61

Unfortunately there were so many uses of ENOSYS in glibc, no easy automated way

to annotate them was found. This might take a week of dedicated effort.

A lot of time was spent on the build systems of Tor and its libraries. Future

developers would not have to worry about this as once an library is compiled for Lind

it can just be reused. As a collection of common libraries is built up, it will be less

likely that a developer will need to port a library.

4.3.3 Execution Throughput

To evaluate Lind’s execution cost, the reader first needs an idea of the expected

overhead for NaCl applications. The overhead associated with running NaCl modi-

fied native code is documented in [12, 35], and shows execution overhead (and slight

speedups) in the 0%–10% range, slowdowns depend on the instruction composition

of the program, and the number of system calls it makes.

To build on their NaCl performance work and to ensure its relevance to Lind,

a micro benchmark called Primes was created. Primes is a memory and compute

bound benchmark which calculates all the prime numbers below 1 billion. The Primes

benchmark uses 64-bit numbers to do the computation, and uses a standard sieve

algorithm.

To see the impact of Lind on compute intensive applications like the Primes, it

was run natively, in NaCl and in Lind. The runtimes of each are compared. The

Primes benchmark is simple enough that is can be run in all three environments. The

rest of the applications in this evaluation are too complex to be run unmodified in

NaCl because of their I/O requirements.

To evaluate the system call overhead, a simple micro benchmark that makes a

single system call is used. Timers are placed all over the system call path, this allows

62

us to focus in and see where the overhead of a system call takes place. The single

system call overhead test is sampled 500 times, and run with one system call, getpid.

Although Lind is still a proof of concept, it can run many popular applications.

Some common applications are used as benchmarks to assess how Lind handles real

applications. These simple applications incude, grep, wget, and a web server. Two

large programs are evaluated, netcat and tor.

4.3.4 Isolation

As mentioned in the Lind isolation model in Section 2.2.1, it is assumed that a

program running in Lind has bugs that might make the program act not in the

system’s best interest. Lind’s goal is to prevent the program from causing harm

to the rest of the system. The two bugs this evaluation will look at are privilege

escalation bugs and resource exhaustion bugs. Section 4.9 discusses why a privilege

escalation in Lind is harder.

Resource exhaustion bugs are a simple denial of service problem where a resource

that the program needs to do its work is used up so that the program (or another ap-

plication) can no longer do its work. This could manifest as simply as a logger writing

so many messages that the log takes up too much disk space and other programs can

no longer write new files, or as a program using a lot of memory and causing other

programs to be swapped out.

There are some best practices from the security domain to help prevent with

resource exhaustion. For instance, it is recommended that the /var/ directory in

Linux be in a separate file system, so that a full file system can not stop the system

from logging, and so that a full log file system can not crash the rest of the system.

Another best practice saves a small percentage of the file system for the root user, so

even when the file system gets full the root user can run programs. By allowing you

63

to set resource limits for programs, Lind lets you ration resources effectively. Ration

programs on a per-application basis and ration every resource, not just disk.

For every run of a Lind program, a restrictions file must be supplied. This file

specifies the quantities of CPU, memory, read-, write-, and other-disk operations,

and network bandwidth each Lind application can use. This is similar to the au-

thorizations that modern cell phone OSes use. The restrictions file also authorizes

some special system resources like access to time, high quality random numbers and

specific TCP and UDP ports.

This evaluation shows that the Lind restriction mechanisms work, and can either

block or rate limit the resources they guard. These restriction tests take place with

the rest of the execution throughput performance tests below, and show that rate

limiting will effectively slow or stop programs that are using more resources than

allowed.

4.3.5 Compute Workloads

A benchmark called Primes was created. It performs a simple prime number explo-

ration. Primes is a classic computationally bound problem with minimal I/O. The

Primes benchmark calculates the primes below 109, and stores them in an array. It

uses the standard sieve technique, that allocates space for the array, then calculates

the primes in a tight loop, and then finally prints the number of primes found and

exits.

Though the Primes benchmark is not complex, it produces two security concerns,

both can result in slowing or terminating other important applications: first, mem-

ory consumption can grow too large; second, the program can monopolize CPU cy-

cles. Imagine a server where your program was running along side hundreds of these

Primes benchmarks, then they all suddenly allocate so much memory your program

64

is swapped out. One would hope the OS’s resource scheduling handles this gracefully,

but the reader will later be shown that is harder to do with resources like disk were

the OS cannot over commit.

The policy mechanisms described in Section 2.5 allow us to address these issues.

The resource file for the Primes application is about 15 lines of simple statements. For

example, the policy to describe the CPU and memory has two commands: resource

cpu 1.0 will limit the program to one virtual CPU’s worth of computation and

resource memory 25000000 sets the maximum memory to 25 MB. File system, net-

working, and other unneeded calls are disabled by setting a Repy security layer.

Disabling these calls helps Lind adhere to the POLA.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
Calculating Primes Under 109, No Throttling

test number

tim
e

(s
ec

)

Primes in Lind
Native Primes
Nacl Primes

Figure 4.2: The execution time for 50 runs of the Primes benchmark, running natively,
in NaCl and in Lind.

The Primes application was run 50 times in each of the native OS, NaCl and

Lind. The time from the start of the calculation to after the result count prints is

65

Environment Min (sec) Max (sec) Mean Standard Deviation

Lind 10.9463 12.4500 11.1245 0.3586
NaCl 11.1440 12.4330 11.3531 0.3505

Native 8.8403 9.8779 8.9367 0.2081

Table 4.4: The execution time for 50 runs of the Primes benchmark

measured. Figure 4.2 shows the primes application execution times in Lind with 80%

the performance of native. Both NaCl and Lind had the same distribution of results

which was bimodal, with a median of 11.007 for Lind and 11.196 for NaCl. Both

had some outliers, in the 11.8-12.4 range, but these were less than 10% of the runs.

Other compute bound programs are expected to behave similarly. Most importantly,

Lind performs at the same throughput as NaCl, so the introduction of Lind does not

decrease the compute performance of an application’s native code execution. Thus,

compute based workloads that will perform well in NaCl should also perform well in

Lind.

4.4 Overhead of a System Call

This micro benchmark quantifies the overhead of a single system call, and classify

the parts of the system call’s execution that take the most time. As described in

more detail in Section 3.1, the path of a system call starts in the program, passes

through glibc, through the Lind RPC module, and then into an IMC socket, where

it is transmitted to Repy. In Repy a system call is received on the other end of the

IMC socket, dispatched, then serviced by the Library OS. The reverse path is then

taken to return the results back to glibc and ultimately the program.

Since the code spans NaCl and Repy, user- and kernel-level, and two programming

languages, using a profiling tool was not possible; however, it was possible to insert

timers in the code. At specific points in the execution, the system clock is read, then

66

glibc

imc_send

recv processing in Repy send

glibc

imc_recv

programprogram

Running in NaCl

Running in Repy

Whole call length1

2 3 4 5

6

Yellow: Timers
Red: IMC Socket communication
Blue: glibc execution path
Green: Repy execution path 7 8

Figure 4.3: Timer locations on the path of a Lind system call.

stored in an array. Those values are subtracted to find out how long each operation

took. Figure 4.3 illustrates the timer positions in Lind and the program.

The overhead for specific system calls was checked, measuring the time spent

receiving, processing, and sending back the system call. The read, write, open,

close, and seek system calls were all examined. For this evaluation I show the

getpid system call, because its implementation is simple. The experiment was run

with 500 runs. As illustrated in Figure 4.3, times were taken at eight sample points in

the path of the system call’s execution. Subtracting timer values allows us to break

down the overhead times into their different parts. For example, the actual system call

is performed in Repy between timer seven and eight, (t8− t7), and (t3− t2) + (t5− t4)

is the time spent on socket I/O in Repy.

Figure 4.4 shows 500 runs of the getpid system call. The trace shown also includes

other system calls, so the initial system calls which are needed to start the system

are included. You can see those calls take longer to service than the getpid calls.

The experiment takes about 75 runs to reach a stable state, before that there is some

variation caused by the system settling down.

67

Figure 4.4: Execution time breakdown of the getpid system call.

Figure 4.5: Execution time breakdown of the getpid system call in Repy.

68

Component Mean time std. dev. % of total
Total time 0.0007474 s 0.00006055 s 100%
Call time 0.0004648 s 0.00004930 s 62%

Send time 0.0000920 s 0.00001500 s 12%
Recv. time 0.0000713 s 0.00004416 s 9%

Packing time 0.0001141 s 0.00003933 s 15%

Table 4.5: Time components from the stable part of Figure 4.5.

69

Figure 4.5 elaborates on the overhead incurred in the Repy part of the system

call, showing time spent sending and receiving data, making the system call and

marshalling the call’s arguments. On average 62% of time of the getpid call spent in

the Library OS, 20% is lost in IPC overhead, and 15% is lost to the RPC marshalling

overhead. Lind’s getpid system call returns a hard coded value; however, in this

experiment Lind was run in “safe mode” when many extra assertions and tests are

performed on each call, and log entries are printed to a file and to the screen. This is

why the getpid call takes longer than you might expect at first glance. Both figures

have spikes in the data, they are assumed to come from scheduling context switches.

The initial 10 system calls are open and stat system calls, so they were not counted.

Figure 4.5 indicates that communication takes some of the time, however, the call and

marshalling code take a lot of time as well. Both the call and marshalling systems

are candidates for easy optimization.

As an update to this section, later in the Lind development the Python profiler

was run on Repy code. With the profiler it was possible to reduce some of the higher

overhead operations, though the times presented here still are representative of the

breakdown of overheads.

4.4.1 Application Performance

This evaluation collects a variety of programs which are already in common use today.

These programs will contrast Lind’s performance with applications running natively,

and show that Lind’s restriction mechanisms perform as expected. These applications

are GNU grep [36], GNU wget [37], and a web server called nweb [38].

These well known applications all run unaltered and correctly inside Lind. Each is

benchmarked, and at the same time, resource exhaustion is addressed through specific

polices for each application.

70

Programs
Name command(s) Version

GNU Grep grep, egrep version 2.9
GNU Wget wget version 1.13
IBM Nweb nweb August 8, 2012
GNU Netcat nc, netcat version 0.7.1
Tor tor version 0.2.3

Libraries
Name Library Version

Lib Event libevent.so 1.4.14b-stable
OpenSSL libcrypt.so 1.0.1c
zlib zlib.so 1.2.7

Table 4.6: Software which was compiled-for and run-in Lind for this evaluation. For
a full list of software run in Lind see Appendix A.

100K 500K 1M 5M 10M 50M
100

101

102

103

104

File Sizes

gr
ep

 T
im

e
(m

s)

Lind grep
Native grep

Figure 4.6: Lind and Native performance of
grep.

100K 500K 1M 5M 10M 50M
102

103

104

File Sizes

w
ge

t T
im

e
(m

s)

Lind wget

Native wget

Figure 4.7: Lind and Native performance of
wget.

Beyond the simple applications listed in Table A.1 two complex applications,

Tor [39] and GNU netcat [40], were evaluated.

Finally, Table A.1 also lists some other programs that were able to be run in Lind,

but did get used in this evaluation.

GNU Grep

GNU Grep is a popular Unix tool for searching for strings and regular expressions

within files. Grep’s performance is impacted by access to disk I/O operations. In

this benchmark, Lind is first initialized with a blank file system, and then 25 books

71

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

test number

tim
e

sp
en

t (
se

c)
Grep File System Throttling

Native

Lind 107

Lind 106

Lind 105

Lind 104

Figure 4.8: Grep execution times running natively versus in Lind. Throttling is
applied with 107 B/s, 106 B/s, 105 B/s and 104 B/s of read operations. Note the log
scale on the time axis.

from Project Gutenberg [41] are copied into that file system. Total sizes of the files

range from 100 KB to 50 MB. The task given to grep is to search for some common

words in many files, the times it took to complete this task in several configurations

are illustrated in Figure 4.6. The command used to run Grep was:

lind ./grep ’He ’ /10609. txt.utf8 /10. txt.utf8 /11. txt.utf8 /1342. txt
.utf8 /1400. txt.utf8 /1661. txt.utf8 /2591. txt.utf8 /30601. txt.
utf8 /38840. txt.utf8 /4300. txt.utf8 /5200. txt.utf8 /76. txt.utf8
/98. txt.utf8

In the test results presented in Figure 4.6 and Figure 4.8, Grep ran on the native

system, as well as in Lind. Figure 4.6 identifies a 10 to 40 times throughput overhead

imposed by Lind over a native application when rate limiting is not triggered. How-

ever, the execution time variance in Lind is mush lower than running grep natively.

The main resource exhaustion concern for Grep is I/O. Restricting the number of

reads grep is allowed per second addresses these concerns. In an experiment, running

72

Grep with various read-rate limitations, the reader can see how these limits impact

overall execution performance. When Grep was run at a 107 B/s read rate, it showed

a small performance slowdown compared to native execution. A read rate of 107 B/s

is about 9.5 MB/s. Because in this experiment Grep did not need to perform more

than 107 B of read the times show no rate limiting impact. Experiments restricted

the reads by 106 B/s (950 KB/s), 105 B/s (95 KB/s), and 104 B/s (9500 B/s), cor-

responding degrees of slowdown were observed, ranging from 16x, to 2000x. This

slowdown occurs because the file used in our experiment is approximately 4.3 MB,

thus the number of reads per second that is needed is larger than what is provided,

consequently, the impact of the restrictions is observable.

GNU Wget

GNU Wget is a common Unix tool for fetching webpages. Wget and a simple web

server called Nweb are run in Lind to further illustrate performance isolation and

resource restrictions. Wget uses both file system and network system calls to receive

and write the requested webpage; however, performance is primarily dominated by

network bandwidth.

To mimic the real world, in this experiment both the client and server side of wget

are located on a WAN. In this case the client that runs wget is in Victoria Canada,

and a simple web server is hosted on Emulab in Utah. This is to simulate the latency

on a normal connection to a server on the Internet. Files on Emulab, varying in sizes

from 100 KB to 50 MB, are requested by the wget client in Victoria. Figure 4.7

demonstrates the differences in performance in Lind and native wget. Note that

because of the bandwidth bottleneck over WAN, the performance of Lind and native

wget does not differ significantly. The throughput overhead of Lind never exceeded

10x.

73

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

test number

tim
e

sp
en

t (
se

c)

Wget Network Bandwidth Throttling

Native

Lind 106

Lind 105

Lind 104

Figure 4.9: Native and Lind performance of GNU Wget on a 151 kB file hosted
locally. Throttling is run with 106, 105 and 104 receive bytes per second.

74

The bandwidth restrictions in Lind shown in Figure 4.9 demonstrate how decreas-

ing the bandwidth available to the application increases execution time. A 151 KB

file is hosted locally then requested with wget. Lind normally executes with band-

width 106 KB/s and introduces a 10x overhead penalty relative to native. As the

available bandwidth is decreased I observe an increase in execution time, showing

how the network throttling can restrict an application’s network resources.

While Wget’s slowdown is roughly 30 times in some cases, it was intentionally

throttled by our default policy.

Simple Web Server

NWeb is a simple web server. It is able to serve static files from the local directory.

NWeb was chosen because its code is simple (only 500 SLOC), and because, at the

time Lind was still being debugged, thus testing with a simple program was essential.

In this benchmark I ran NWeb and restricted three parameters: CPU, outgoing band-

width, and file system read rate. These are the most common resource exhaustion

scenarios. This benchmark uses a more meaningful metric, the transmission rate of

the web server.

Each performance isolation criteria was tested with a simple web server running in

Lind and an external client, the transfer size in each set of experiments was 11 MB. A

somewhat larger than normal file size was chosen to ensure resource restrictions and

performance isolation could be clearly observed. Figure 4.10 compares the unlimited

web server’s performance with throttled performance. Each bar in the graph manipu-

lates one parameter at a time, and had a sample set size of 10. The leftmost bar sets a

baseline for unthrottled performance. The CPU bar illustrates the transmission rate

impact of restricting the application’s CPU parameter to 10%. The bandwidth bar

shows the impact of setting a bandwidth restriction of 100 KB/s, while the rightmost

75

Unthrottled CPU Bandwidth Read
0

100

200

300

400

500

600

700

800
Performance Isolation of a Webserver in Lind

type of throttling

tr
an

sm
is

si
on

 r
at

e
in

 k
B

/s

Figure 4.10: The NWeb web server running in Lind, and running with CPU, network,
and file throttling enabled. Note the missing error bars on bandwidth and read, that
data was lost.

76

100K 500K 1M 5M 10M 50M

102

103

104

105

File Sizes

ne
tc

at
 T

im
e

(m
s)

Lind netcat

Native netcat

Figure 4.11: Transmission time of binary data files in netcat over the WAN.

bar reflects effective restriction for file reads with a rate of 104 B/s. These experiments

on the simple web server indicate that applications running within Lind are effectively

bounded by performance isolating criteria enforced by Repy. Bandwidth restrictions

to 100 KB/s resulted in the expected amount of throttling. Likewise limiting CPU

to 10%, as well as, in a separate experiment, limiting reads to 104 B/s both showed

the expected results.

Netcat

netcat, often referred to as a “Swiss-army knife” for TCP/IP [40], is a program for

reading-from and writing-to network connections using the TCP and UDP protocols.

As a versatile network-investigating and debugging tool, netcat has a rich set of

built-in capabilities; capabilities such as port scanning, transferring files, and port

listening. Netcat could also be used as a back door. In this section, Lind’s impact on

the throughput of netcat’s binary data transfers is evaluated.

In a simple file transferring scenario, acting as a server, one networked system

opens a TCP connection by listening for inbound connections on a specific TCP port.

The second system connects and transfers data messages to the server by creating

an outbound TCP connection to the same port. The server side of netcat stays

running until the end of message is reached. How netcat is used in practice is a pipe

77

is used to send data to the netcat client (that is then sent) and the server pipes data

it receives into a file. This amounts to a simple file transfer—using no application

level protocol—just sending raw bytes of a file through the socket.

Similar to wget, in this experiment, the client and server side of netcat run on a

WAN. The client side on Emulab runs a native version of netcat, whereas the server

side in Victoria runs netcat both as a Lind application and a native application,

respectively. The transmission times of binary data files in various sizes, and the

corresponding memory cost are measured and compared. Figure 4.11 shows the data

transmission times. From Figure 4.11, Lind adds an extra overhead to netcat that is

under 10x.

Tor

Tor [39] is a popular low-latency anonymous communication service, designed to pre-

serve user privacy in network communications. Tor is designed to protect users against

trafc analysis, and to permit communication when services are blocked by local In-

ternet providers. Tor’s intended users include journalists, free speech advocates, and

privacy advocates. Tor uses a combination of randomized routing and hop-by-hop

encryption to ensure privacy and anonymity. In a Tor circuit, each relay knows only

its predecessor and successor, so no node knows both sender and destination. Further,

each hop is separately encrypted. Tor is an attractive candidate as a Lind application

for several reasons. First, the Tor network is resource-constrained, with constant ap-

peals for new relays. Second, both bandwidth and computation requirements are well

within the range of any computer. Third, the requirement for hop-by-hop encryption

argues for use of native code wherever possible. Fourth, the value of Tor is given by

the number of Tor relays, and by the number of clients for which Tor is accessible.

Both of these considerations argue for the support of a large number of device types

78

Benchmark Native Code Lind % Increase
Digest Tests:

Set 57.31 nsec/element 67.24 nsec/element 17.33%
Get 50.75 nsec/element 50.18 nsec/element -1.123%
Add 12.52 nsec/element 14.47 nsec/element 15.57%
IsIn 8.93 nsec/element 10.59 nsec/element 17.58%

AES Tests:
1 Byte 16.02 nsec/B 25.17 nsec/B 57.12%

16 Byte 8.37 nsec/B 14.94 nsec/B 78.49%
1024 Byte 7.11 nsec/B 14.18 nsec/B 100.57%
4096 Byte 7.13 nsec /B 14.25 nsec/B 100.14%
8192 Byte 7.17 nsec/B 14.37 nsec/B 100.42%
Cell sized 7.36 nsec/B 13.85 nsec/B 88.18 %

Cell Processing:
Inbound 3790.52 nsec/cell 7040.96 nsec/cell 85.75%

(per Byte) 7.45 nsec/B 13.83 nsec/B -
Outbound 3830.62 nsec/cell 7051.98 nsec/cell 84.10%
(per Byte) 7.53 nsec/B 13.85 nsec/B -

Table 4.7: Results from Tor’s builtin benchmark program.

and operating systems, on a single executable. Lind reduces the support burden for

Tor routers. Fifth, Tor’s effectiveness is dependent on its security properties, volun-

teers will not run Tor if they think it makes their computer slower, and there are

known attacks on Tor based on resource exhaustion and privilege escalation. Finally,

Tor is a good candidate as a legacy system because it is implemented with approx-

imately 102 KSLOC, with dependencies on other C libraries like OpenSSL, libevent

and zlib. It would require a large effort to port Tor.

Tor runs unmodified in Lind. Traffic flowing through Tor is sporadic, so measuring

live Tor throughput is not a good gauge of performance; however, Tor’s source code

comes with a benchmark that executes several of Tor’s common operations. This

benchmarks is used as a gauge of Lind’s impact on the performance of Tor.

Table 4.7 summarizes the results of the benchmark. The benchmark focuses on

cryptographic operations, these are CPU and memory intensive; however, the bench-

mark also makes system calls like getpid, and reads to /dev/urandom. Table 4.7 is

summarized from the real benchmark’s output. The benchmark does not have doc-

umentation, but it is short so the code was read to see what it is doing. The digest

operations time the access to a map of message digests. The AES operations time

79

Size Median Time
0 B 0.000246 s

500 B 0.000259 s
1000 B 0.000242 s
1500 B 0.000268 s
2000 B 0.000281 s
2500 B 0.000281 s
3000 B 0.000283 s
3500 B 0.000287 s
4000 B 0.000297 s
4500 B 0.000302 s
5000 B 0.000308 s
5500 B 0.000313 s
6000 B 0.000324 s
6500 B 0.000321 s
7000 B 0.000326 s
7500 B 0.000331 s
8000 B 0.000335 s

Table 4.8: Results from different sizes of null system calls.

encryptions of several sizes and message digest creation. Cell processing executes

full packet encryption and decryption. Lind slows the operations between 0%–85%.

Besides the system call being serviced, these slowdowns are caused by the differences

in the code produced by NaCl, and the increased overhead from Lind system calls.

As described in Section 4.3.1, when the OpenSSL library was compiled for Tor, the

assembly optimized encryption routines were turned off, so the encryption will be less

optimal for the processor.

4.5 Size of System Calls

The size of a system call could impact the runtime performance of Lind. This ex-

periment quantifies the impact of the size of a system call on its execution speed. In

this experiment, 500 null system calls were made, at a number of different sizes, all

the way from 0 B, to 8000 B in increments of 500 B. 8000 B represents the current

system call size limit in Lind.

The 500x17 samples represented in Table 4.8 collected were centered around a

single point at each size; however, there were some extreme outliers in each data set.

To remove the impact of outliers, median is used as the estimation of execution time.

80

The time does trend upwards as the size of the system call increases, though not very

much, especially considering the overall system call time of a normal write call which

is 100x larger—around 0.0012 s. The slow upward trend is expected; there is more

data to copy each time.

One conclusion to this experiment is that it would be better to use the largest

system calls possible. Lind’s limit of 8 KB was only selected because of the default

limit of the Unix Domain Socket and similar to what the OS uses normally. A limit

of 64 KB might make large system call workloads perform much better, as we can

trade many small system calls for fewer large ones.

4.6 Memory and Disk Consumption

Execution throughput is not the only metric that matters, memory and disk are finite

resources, so Lind’s impact on them matters. To quantify the impact Lind has on

memory use, memory usage is tracked in Lind uses versus memory the same native

program uses.

Memory is measured on a per-process granularity. Since Lind runs as three pro-

cesses, their totals are summed. Sampling is done by a script polling the ps command

for the memory resident set size (RSS), at an interval of one second. This gives me

the memory usage over the life of the process, the maximum of those values is then

taken as the peak memory consumption. The peak is expected to be representative

of the overall usage. Results are collected in bytes, then converted into megabytes

because this is the most common representation of memory usage. Lind is run in

three processes, so the total of the three is used.

Memory usage in Linux is a complex issue, mmaped files and shared libraries are

counted in the RSS total, even though they do not occupy actual physical memory

81

Program Memory Disk
Lind Native Delta Lind Native Delta

netcat 28.2 MB 0.9 MB 27.3 MB 110 KB 78 KB 32 KB
primes 154 MB 122 MB 32 MB 13 KB 8.5 KB 4.5 KB

grep 31 MB 1.9 MB 29.1 MB 457 KB 509 KB −52 KB
wget 31 MB 1.2 MB 29.8 MB 382 KB 387 KB −5 KB
nweb 30 MB 0.5 MB 29.5 MB 22 KB 27 KB −5 KB

tor 53.7 MB 24.6 MB 29.1 MB 5.2 MB 1.8 MB1 3.4 MB

Table 4.9: Memory consumption and disk usage of programs running in Lind and
natively.

in some cases. Even the two Python VMs used in Lind are forked from each other,

and should share most of their memory. The numbers presented here should treated

as a worst-case scenario.

Table 4.9 shows the peak RSS memory usage for each of the programs while

running the previous benchmarks.

Lind’s memory usage is actually very similar to the native programs, except for

a constant additional amount of memory (approximately 30 MB). That 30 MB is

comprised of the additional overhead of running the NaCl sel ldr process to run

the program, as well as two Python processes, one to run Repy, and one that is an

external monitor process. Repy’s two Python processes are forked from one other, so

they share some copy on write memory and libraries. These two processes sharing of

memory is not counted in these numbers. I will describe in the Future Work section

that it would be possible for many Lind programs to share the same Python process,

though this functionality is not implemented in our current version of Lind.

Disk space usage varies only slightly over native applications. The only outlier is

Tor, which is much bigger. In the case of Tor, I compiled the Lind version with a

static version of OpenSSL, zlib and libevent. When those libraries are added to the

native build it becomes 5.3 MB, almost exactly the same size as the Lind version.

These results were expected. The only difference between a Lind executable and a

82

Python C Repy Repy No Flush No Nanny Lind
0

1

2

3

4

5

6
500 Samples of 40MB write of file on differnt platforms

Platfrom

M
ea

n
tim

e
in

 s
ec

on
ds

Figure 4.12: Time to write 40 MB to disk on different platforms.

native executable that would effect the size is that the Lind executable must use

NaCl’s formatting rules, which means instruction blocks must be aligned to 32 byte

boundaries. In cases where exact alignement is not possible, NOP padding is used [12].

This should not manifest as a drastic change in code size. Lind’s results are smaller

in some cases, this is probably because the library code Lind uses is smaller than a

native program. The changes are so minor, a detailed study is not warranted.

4.7 Quantifying I/O Slowdown

The observations presented above show that I/O based applications are at least 10

times slower in the Lind prototype. This section further quantifies where that slow

down comes from. The benchmark used in this section writes a 40 MB file to the

file system. To help isolate where the 10x slow down comes from, this benchmark

was run on several different platforms, C, Python, Repy, Lind, and some modified

versions of Repy.

Figure 4.12 shows a barplot of the 6 configurations run 500 times each, the mean

83

and standard devotion is shown. Histograms showed that the larger results were

normal, the faster results (C and Python) had more noise in them.

The first notable observation from Figure 4.12 is that Repy is much slower than

Python, in fact in these runs Repy’s I/O performance accounts for slightly more than

half of Lind’s slowdown and in this case is about 7x slower than Python. To help

break down this overhead caused by Repy, Repy was modified in two ways: the Repy

writeat system call was changed to not seek or flush, the calls to the Repy nanny

were also removed. The nanny is the rate limiting system, and even though it was

set to not rate limit at all, you can see it has a significant impact on the performance

of writes, removing seek and flush did not have as much of an impact.

These results highlight an important lesson learned, Repy’s I/O performance is the

dominant factor in the Lind overheads, and unfortunately, Repy was not built with

performance in mind. Optimistically though this gives Repy a lot of room to improve

its I/O performance. For instance the nanny calls could be made asynchronously, so

that they are not blocking the I/O path.

4.8 Quantifying Isolation

Throughout this chapter, there is an assumption that rate and functionality limit-

ing a program helps enhance temporal isolation with other programs. This section

presents simple benchmarks which shows that limiting can help a process behave

more regularly.

The first simple experiment is to simply check that a program which writes to

disk is not able to excede the policy limit. A simple logging program was used, and

told to write a large log. The Repy policy was changed to allow 1 MB of disk usage,

then the program was run.

84

lind@hypervisor:~/test$ lind ./big_file.nexe

Disk use ’3467323’ over limit ’1000000.0’. Impolitely killing child!

Terminated

The console trace below shows Repy ”impolitely” stoping the offending program by

killing the NaCl and Repy processes. This experiment shows that Lind can effectivly

cap the amount of disk space a program is able to use. The example policy file in

Section 2.5 shows many other resources which can be limited or capped.

Another example, setting a memory cap:

lind@hypervisor:~/test$ lind ./big_file.nexe

Memory use ’7122944’ over limit ’2500000.0’. Impolitely killing child!

Terminated

One thing to note is that Repy monitors usages by polling, so there may be a

short span (less than a second) where the program can excede the limit before it is

killed.

Opening files in the local file system also fails.

int fd = open("/test", O_CREAT|O_WRONLY , S_IRWXU|S_IRWXO|S_IRWXG);

The file /test is created within the Lind file system, not the native file system.

4.9 Mitigating Privilege Escalation

Privilege escalation is categorized by horizontal privilege escalation and vertical priv-

ilege escalation. Horizontal escalation occurs when the program gains access to re-

sources that another equally privileged part of the system has access too. For example,

an authenticated user gaining access to a different authenticated user’s restricted files,

or a program being able to crash a different program are both cases of horizontal es-

calation. Vertical escalation is when an program is able to gain higher than permitted

85

rights in the system. An example of vertical escalation is when a non-root program

is able to operate as root, or when a program is able to run code in the OS kernel.

This section will deal with how Lind reduces the risk of both horizontal-escalation

and vertical-escalation attacks.

Horizontal escalations are prevented by Lind because of Lind’s share nothing

model: Nothing is shared between Lind programs. Specifically, the Lind file sys-

tem is not shared between programs at runtime, so the file system is not a vector of

attack, socket connections can be blocked to localhost so communication over sockets

cannot be made to other local processes. Lind programs cannot send signals to other

programs. Lind programs cannot create or open Unix domain sockets, or any other

type of special files. Without any shared medium there is nothing to propagate the

programs influence into another part of the system. The only way a program is able

to access another program on the system in any way is by circumventing the NaCl

or Repy sandboxes, irrespective of Lind, or accessing a side channel which has not

anticipated.

One vector for horizontal escalation in Lind that still exists is if a program is able

to put something in a Lind file system, then another program is run using that file

system. For example, when the benchmark section was setup, one program was used

to copy files into the file system, then the actual benchmark programs were run. That

copy program can do whatever it likes to the file system, so if it is able to change

it in a way to attack the benchmark program that is a possible attack. This implies

that Lind programs must consider a file system as input when they are started, and

check that input as they should any other untrusted input.

Vertical privilege escalation is mitigated by the sandboxes Lind makes use of. As

discussed in Section 2.2 and 5.1.1, both NaCl and Repy present an interface to the

system that is intended to be very hard to exploit, and use strong mechanism to

86

stop access to the system in any way besides using the safe interface. As long as

the NaCl and Repy sandboxes function correctly, the only way Lind could allow a

vertical privilege escalation is by introducing a new attack vector itself. As discussed

in Section 3.4, Lind makes only minor changes to those interfaces, specifically, one

new system call in Repy and the implementation of that system call. To help ensure

that this minor change could not be a source of vulnerability, the code was reviewed

by two security researchers before it was committed—a common practice to assure

code is secure. Still, the code should only be counted as a proof of concept, not a real

battle tested secure system.

4.10 Summary and Discussion

On some workloads Lind is fast. In the Primes benchmark, Lind was able to per-

form at 80% of native execution speed, because it is a CPU bound computation. In

other CPU bound benchmarks like Tor, Lind’s proof-of-concept implementation ran

at worst at 15% of native speed, though most benchmarks ran closer to 80% of native

speed. On I/O bound benchmarks Lind’s proof-of-concept implementation was much

slower. In the non-rate limited case Grep ran 11x slower than native. The wget

example took 200 ms. Though the Lind I/O overhead is large, it is still within the

standard operating time scale of the internet. A 200ms page load is not uncommon

on the Internet.

Lind’s memory use is quite a bit larger than native programs. The increase in

memory is caused by several things. Lind uses a three process model: the NaCl

process, the Repy Python process, and the Repy Python monitor process. The Repy

processes have full Python interpreters running in them. The NaCl process has code

setting up the SFI, and then processing all the different types of system calls. This

87

three process model does add a lot of memory overhead for small applications, but

should be less noticeable for large applications, as this part of the memory overhead

is fixed at about 30 MB.

In I/O heavy programs Lind’s performance penalty is due to several factors. First,

in some cases, Repy is rate limiting all requests going out of the sandbox. This means

disk access, and network I/O are all throttled. Second, NaCl imposes a small runtime

overhead, which can be optimized. For the purposes of the Lind prototype, these opti-

mization were not pursued, because Lind was a proof of concept used to demonstrate

that Lind did not introduce any additional overheads for CPU and memory intensive

applications.

Finally the system call round trip time has been made much longer in Lind.

System calls now have to go through my modified glibc, be marshalled, then be

passed down a Unix Domain Socket, be unmarshalled, dispatched, processed by Repy,

then a reply must go through the reverse path. That is why I/O bound applications

are slower in Lind. Unix Domain Sockets were not the best choice for interprocess

communication; however, they are supplied by NaCl, so no addition to the TCB

was needed to use them. This choice was a tradeoff between security and ease of

implementation and performance. As I describe in future work, I have done an initial

exploration of an implementation that reduces the Unix Domain Socket overhead by

moving Repy and NaCl into the same process.

The simple timing experiment in Section 4.4 shows that a sizeable portion of

system call time goes into executing the system call in Repy. During Lind’s proof-

of-concept implementation, no time was spent profiling the Library OS server. The

11x slowdown in I/O operations could be sizeably reduced by optimizing Repy and

the Library OS server. For instance, the stat system call actually reads the entire

file to find out how big it is. This naive way of finding file size was chosen because

88

Repy does not have a size call itself. A better way to get file size would be to store

each file’s size in the file system metadata, and update it on writes. This alone

would likely cut the 11x overhead in half. There are many locations in Repy and the

Library OS where a dedicated programmer could trim runtime overhead, but as a

proof-of-concept implementation those tasks were omitted.

In trade for a slowdown it was shown that Lind helps prevent resource exhaustion

bugs, as well as privilege escalation bugs. Overall, a 10 times overhead is a steep price

to pay for isolated legacy computation; however, the paradigm still holds promise for

some applications, specifically, those that perform relatively few system calls, and

those in which isolation is paramount—many of these initial costs in the prototype

can be mitigated through engineering efforts, and given the relative immaturity of

the Lind implementation there is lots of room for performance gains.

To investigate how easy it is to port an application to Lind, I described the steps

necessary to port Tor to Lind. The two weeks to port Tor was primarily spent on

adding and fixing system calls and setting up the build systems of Tor and the libraries

it uses. These times will be reduced as more libraries are precompiled for Lind, and

bugs are shaken out of Lind’s implementation.

89

Chapter 5

Related Work

Program isolation began when computer systems switched from single job OSes to

multiprogrammed time sharing OSes. As soon as more than one program was loaded

into the system the opportunity to have them interoperate and interfere became pos-

sible. Resources had to be partitioned and shared, and the modern OS—as a resource

and information control mechanism—was born. Dijkstra’s “THE”-multiprogramming

system [42] was a single-user system and introduced software enforced memory seg-

mentation where the programmer did not have to directly write code based on physical

memory drum locations. Enforcement was done through the ALGOL compiler, but

was done in the name of multiprogramming, not security. The first OS to embrace

security as a fundamental design property was Multics [43]. Multics used a hard-

ware enforced memory segmentation in a scheme with a permissions table similar to

modern X86 virtual memory page tables. The modern notion of virtual memory is a

logically isolated address space each process runs in. These systems all took the idea

of sharing resources, then provided means of isolating the sharers.

Other abstractions of program execution also exist. Just as OSes are primarily

about sharing and multiplexing resources, Virtual Machines [44] are an abstraction

90

System
'VM

'

O
bjects'

Processes'

M
ono'purpose'

Com
ponents'

Size'of'Isola;on'Small' Large'

Figure 5.1: Isolation comes in many forms, with many sizes of granularity. Lind,
tries to provide isolation stronger than process isolation, but not by using a machine
abstraction like VMs do.

that partition one physical machine into many logical machines, effectively creating

many smaller isolated machines—isolating OSes on the same machine from each other.

This is the opposite approach to isolation, in that it isolates then shares instead of

how OSes share then isolate. The modern mechanics to support the VM abstraction

span all the way from the hardware to support of modern processors [45], to the

binary rewriting [46] used by VMware, to blurring the hardware interface as in the

Xen Hypervisor [47]. If the multiplexing of hardware does not have to happen at

the lowest levels of the system, the OS can provide logically independent machine

interfaces. Good examples of this technique are the Linux kernel’s KVM project [48],

Linux containers [49] and Vservers [50]. Since virtual machines are logically isolated

machines, programs running inside of them are isolated from each other.

Now that we have seen the design, implementation and evaluation of Lind, we can

revisit Chapter 1’s granularity spectrum. Figure 5.1 shows that spectrum again. Lind

91

provides stronger isolation than processes, but with different runtime characteristics

than a VM. This places Lind in an interesting place in this spectrum. There have been

and are many other technologies for isolating programs, the rest of this chapter covers

those in depth. The two ideas of processes and VMs are similar to Lind’s isolation

mechanisms, so they are covered in depth. The rest of this chapter is structured as

follows. Section 5.1 will discuss the general area of systems security and best practices

to inform system design. Section 5.1.1 will discuss modern isolation mechanisms in

the context of these best practices and in the context of Lind’s design.

5.1 Building Secure Systems

Isolation and security go hand-in-hand. A well isolated system is more secure. The

rest of this section discusses some relevant security best practices, and how they

impact isolation.

The Open Web Application Security Project (OWASP) defines a model for think-

ing about security problems [51]. In their model, a threat agent makes use of an

attack vector to exploit a security weakness to circumvent security controls to cause

a technical impact which eventually causes a business impact. Systems work mainly

concerns itself with the attack vector through to the technical impact. Attack vec-

tors are the technique by which the attacker compromises the system, and security

weaknesses are the problems which the attack makes use of. Security controls are the

mechanisms that are setup to control how parts of the system are allowed to interact.

Finally, technical impacts are actions like executing some code or gaining access to an

asset—some information or execution the attacker would otherwise not have access

to.

There are many possible security weaknesses. Some common weaknesses are listed

92

in Table 5.1 [1, 2]. These all result in varying degrees of compromise, and can be

compounded. The worst case scenario is a remote code execution in which the threat

agent can run arbitrary code on the machine.

There is much research on fixing these security weaknesses, but Lind works further

down the chain, at the security control level. So if a program has had one of these

weaknesses exploited, now what can it do? Hopefully, in a sandboxed environment,

it can do nothing more than it already could. This is a fundamental principle of

sandboxing, resource access policies are decided outside the application, so when the

application is misbehaving it cannot do more than it should be able to. For example,

if an application reads files only in directory A, there is no time ever when it should

be accessing directory B. Instead of allowing the application to decide what it should

access, this rule can be enforced by the sandbox. Another way to think of it is:

sandboxes are an effective mechanism to enforce the POLA onto an application even

when the application is not trusted.

To combat these attack vectors, and as a means to block technical impacts, many

security best practices are recommended. Some that are relevant to the design of a

sandboxing system [3] are listed in Table 5.2.

93

Common Name Description
Buffer overruns Miscalculate buffer size so program writes data off

the end of a buffer to overwrite program code or
data.

Uncontrolled format string Format strings used by printf and similar func-
tions subverted to leak private data.

Integer overflows Integer wrap around violates programer’s expecta-
tions.

SQL injection Unescaped user input used in SQL statement that
allows attacker to change the meaning of the state-
ment.

Command injection Unescaped user input is placed in a shell command
which can then change the meaning of the com-
mand.

Failing to handle errors An unexpected error puts the system into a state
the programmer did not expect.

Unprotected network traffic Sending data or program state without encryption.
Weak passwords Passwords which can be easily guessed.
Storing data without pro-
tection

Writing private data or program state to disk with-
out adequate protection.

Information leakage Provide an interface to the system which provides
more data than expected.

Improper file access
(TOUTTOC1)

Trigger program races and errors by changing the
file system in unexpected ways.

Trusting network name res-
olution

DNS servers the program uses are subverted so
network connections are to a different party than
expected.

Race conditions Problems caused by accessing the system in paral-
lel.

Strong random numbers Encrypting without a source of real randomness.
Poor usability User interface design which leads the user to per-

form an unintended action.
Improper pathname Uncontrolled filename from outside allows more ac-

cess to the system than expected.
Download without integrity
check

Program downloads code or updates, however
download is subverted and they run something
else.

Untrusted functionality Using code from untrusted sources.
Use of dangerous function Using something which can do a lot more than just

the intended task.
Unnecessary privileges Same as the POLA mentioned before.
Incorrect permissions Permissions not correct for some use case, or too

open.

Table 5.1: Common security weaknesses from OWASP [1] and SANS [2].

94

Practice Description
Secure the weakest link. If control of the system can be gained from anywhere,

attackers will attack the most vulnerable part of the sys-
tem.

Practice defence in depth. Have multipul layers of enforcement, so if one level of
security control fails, others can still catch the problem.

Fail securely. Try to envision all failures, even those that are unlikely,
then deal with those situations as if they were common.
This includes ensuing that error recovery is secure, for in-
stance making sure that no private information is leaked
in error messages or written into logs.

Follow the principle of least privilege. Give each part of the system the least possible privilege,
so if it is subverted it cannot do more than what was
intended.

Compartmentalize. Break the system up into well isolated parts, so if one is
subverted the others can still function.

Keep it simple. Complex system are hard to understand, and can be hard
to detect if they are acting inappropriately.

Promote privacy. Privacy is easier to manage if it is a first class concern in
the system.

Remember that hiding secrets is hard. Try not to build a system that can be compromised if the
attacker gains access to a “secret”, specifically something
about the implementation or single key or password.

Be reluctant to trust. If possible, operate in a way where you trust as few things
as possible. The fewer trusted parts of the system, the
less

Use community resources. There are many online forums where you can get great
up-to-date information such as CERT and SANS.

Table 5.2: Some security best practices which apply to building sandboxes [3].

95

Sandboxes provide restricted execution environments—a key design element be-

hind Lind. The following overview surveys a variety of mechanisms for controlling

access to system resources and ensuring controlled application behaviour.

5.1.1 Sandboxing in the Wild

Probably the most popular approach to sandboxing is language-based sandboxes. A

language based sandbox requires that the untrusted program be written in a particular

programming language, that, because of the semantics of the language can be isolated

by the language’s runtime. Examples of these sandboxes are Java’s JVM [52], and

Adobe’s ActionScript’s Flash sandbox [53,54].

Programming language VMs, such as Java, Silverlight, JavaScript and Flash are

commonly used sandboxes that have achieved widespread adoption. These sandboxes

combine untrusted application code with an interpreter and standard libraries. Stan-

dard libraries consolidate routines to perform I/O, network communication, and other

system sensitive functionality. Though many sandboxes implement the bulk of their

standard libraries in a memory-safe language like Java or C#, flaws in memory-safe

code can still pose a threat [55,56]. Furthermore, memory-safe languages must include

their compilers and runtimes in their TCBs.

Building a safe language-based sandbox which has no impact on the system it

runs in is Repy’s goal. As mentioned in Section 2.2, Repy is a subset of the Python

language. Repy uses a library called safe.py written by Phil Hassey to run a Repy

program in a custom subset of Python. The subset chosen intentionally blocks all

of the system libraries, then disallows Python import statements, which could then

reenable them. Specifically, Repy is Python without: the import statement, global

1TOUTTOC stands for Time Of Use To Time Of Check.

96

variables, stdin input, and a collection of keywords and attributes which may be

used to escape the sandbox—for example the exec dynamic code loading call [57].

Because Repy hides the Python system API, it provides its own calls to access the

system. This API is detailed in Section 3.1.1, and was designed to be minimal, simple

to use, and easy to formally verify. On top of this API, some of Python’s standard

libraries are re-implemented. However, they are not inside the TCB of Repy, but

rather in the untrusted space. Repy provides security policies that are factored out of

the Repy kernel, so there is a simple dynamic means of controlling policy. The Repy

API is provided by a set of security layers, each of which has a capability to access

one type of resource in the system [13]. Each security layer is also isolated from the

untrusted code and the system, so if a security layer is compromised then at worst it

can only allow the actions it is responsible for to occur. Much of the logic of system

access in Repy is factored into these safe security layers, meaning a lot of Repy is

outside of its TCB.

OS-based mechanisms are also a popular means to isolate applications. These

sandboxes use OS specific and OS/sandbox-specific APIs to setup customized application-

specific environments for processes and subprocesses to run. For example, all appli-

cations sold in the Mac App Store must use Apple’s OSX sandbox [58]. This setup

requires a signed permissions file, (that Apple calls entitlements), describing which

parts of the system the program can access—files, networking, webcams, and other

devices. When executing, the application is restricted to these resources by the OS.

By default, a program can access only its own private folder. Figure 5.2 shows the

configuration of the sandbox, in which the developer can select the entitlements they

want for their program. It is important to note that this is an opt-in system because

the developer could just select all the entitlements; however, the POLA tells us that

it is best to select as few entitlements as possible.

97

Figure 5.2: In Apple’s XCode application, selecting the application sandbox’s entitle-
ments. These are the operations and data that the application will be able to access
when it is run.

98

Since Windows 2000, Microsoft OSes have shipped with a sandboxing mechanism

[59]. It is not widely used as a general purpose sandbox, but some developers use

it to build more secure applications that are specifically targeted to the sandbox.

The sandbox works by setting up tokens that limit a child processes access to the

file system, rate limit the child’s access to resources (for instance the clipboard), and

stop the child from performing operations like launching other programs and doing

some graphical operations or shutting down the system. The sandbox interface does

not span the entire Windows API though, so it is not considered as much a sandbox

as a deterrent.

One notable use of the Windows sandboxing technique is in the Adobe sandbox.

Adobe’s strategy for sandboxing Flash and Acrobat programs is to contain zero day

exploits [53, 54]. On Windows, Adobe’s Flash and Acrobat sandboxes use several of

Windows safety features including data execution prevention, modified system call

tables, and file system permissions. A program launched in this sandbox must first

re-enable these system calls, and create another child with more permissions to escape

the sandbox. This is no small task, as the system calls to do so are blocked.

Operating system level mechanisms can also be used to achieve a lot of the goals of

Lind. These approaches have the most success functionality wise, however, they also

are the most invasive and error prone methods because they require (often complex)

changes to the OS’s kernel or worse building a whole new OS, and they tend to be

more of a one-size-fits-all solution.

One simple sandboxing mechanism that is used commonly on Unix based machines

is a chroot jail [60]. Chroot jails change an applications perceived root directory to

somewhere else in the file system, so the application can no longer travel any higher

up in the directory tree structure than the jail’s root. It is a common best practice

to run daemons that do not need access to most of the system in their own dedicated

99

chroot jail. For example, by default the Network Time Protocol (NTP) daemon is

run in a chroot jail.

However, there is a ease of use problem with chroot jails—files that do need to be

accessed need to be copied or linked into the jail. Since libraries, most importantly

glibc, are loaded into programs on Linux, it may actually be hard to figure out which

files a program will need to access.

As an example of this complexity, the DNS subsystem in glibc will access many

files in /etc/ on its first use. The logging files stored in /var/log/ are another good

example of files that are needed. All these dependancies must be sorted out manually,

or worse the programmer will just give blanket access to /etc/ for the jail—a violation

of the POLA since not all the files in /etc/ were needed. Some of these issues can

be side-stepped by invoking the jail after the program is running, since open files are

not effected by the invocation of the jail. One known problem with chroot jails is

that once in the jail another chroot system call can be used to change the root again,

possibly back to the original root. Further, file systems can still be accessed if there

is a path to the device file from which the file system is created. Chroot jails cannot

do any special enforcement of read-only attributes. So chroot is more of a deterrent

than an absolute file system restriction mechanism.

Some other Unix facilites are commonly used in sandboxing. The rlimit system

call sets a per-process memory limit on the heap or address space of a process. When

processes allocate more memory than their rlimit, they are terminated by the OS.

The nice system call can change a processes priority, so that it receives less CPU

time. Processes can also be started and stopped with signals, the technique Repy

uses to slow applications which use too much CPU time.

In use today there are several virtualization systems which provide sandbox like

isolation. Operating system-level virtualization platforms modify the OS to provide

100

logically isolated runtimes for processes. OS-level virtualized programs always share

the same kernel, but have restricted views of the system and access to resources is

controlled. OS-level virtualization is also referred to as container-based virtualization,

presumably the name stems from Solaris. Containerized OS’s isolate processes at the

system call level, imposing a customized environment and restrictions through system

calls. Solaris Containers [61] allow a super-user to break process up into separate

zones each of which has separate: networking, storage, and namespace. Processes

within a zone can see and modify only other processes in the same zone. Memory,

CPU and physical hardware like the network interface can be shared amongst all

the zones or assigned to a single zone, however these resources are presented in an

abstract form. To minimize storage use, file systems can be shared through a copy-

on-write mechanism so all the zones do not have to keep a separate copy of the root

file system. Similar to zones, FreeBSD jails [62] extend the chroot jail notion to apply

to the whole system instead of just the file system. In FreeBSD jailed processes are

bound to specific IP addresses, and have no access to routing- and raw-sockets, and

no access to processes running outside the same jail. Jails also have their own copy

of the file system, that is not shared.

For Linux, several container-based virtualization platforms are popular, most no-

tably: OpenVZ [63], LXC [49], Virtuozzo [64] and Linux-Vservers [50]. These all

operate similarly to zones and jails, each providing limited access to the system for

a collection of processes. Containers have appeal because of their low system over-

head, and are conjectured to be the best runtime for large collections of diverse

programs [65].

One detractor from container-based isolation is that it is built into the OS, this

causes problems in two ways: it makes it harder to maintain the container system [66]

and because it is an expansion of the OS interface it could lead to new security and

101

stability problems. Furthermore, the isolation of container-based systems is weaker

than more heavy weight virtualization platforms. For instance, processes running in

LXC still share many common buffers, and process can even share common mem-

ory pages (for instance glibc) [67]. These optimizations are part of what makes

containers so light-weight, by sacrificing some isolation. Unlike more heavy-weight

isolation mechanisms, container-based virtualization normally has the capacity to

run thousands of sandboxes on one machine, which is important for isolating modern

workloads.

Though they are primarily concerned with the prevention of malware and not

security in general, Data Execution Prevention (DEP) and Address Space Layout

Randomization (ASLR) are techniques many OSes employ to enhance the security of

native processes [68]. DEP uses the paging mechanism to mark pages in the stack

and heap memory segments as not executable, and pages in the code segment as

not writable. The effect of those two changes is that new data introduced to the

program after it starts cannot contain instructions that can be executed. ASLR

furthers this protection by randomizing the layout of the code in the code segment

so that “stack smashing” techniques cannot stitch together code at known offsets to

perform malicious work.

AppArmour [69] and SELinux [70] are Linux kernel based sandboxes. Program

policies work by restricting the parts of the file system a program can access and

the system calls it can make. Profiles exist for many of the most popularly exploited

applications, such as web browsers and server programs. AppArmour tries to make it

very easy to write policy files, and has a learning mode in which policy violations are

logged so the policy can be revised. This sort of learning mode would make it easier to

make policies in Lind too. These system impose a discretionary access control model

on resources and the file system. This allows principles like users and programs to

102

be explicitly identified, making a rule like “the firefox program can write only to the

/tmp/ directory” possible. Rules can be composed, so base rules can be made for

classes of applications with the same needs, for example “gnome applications need

read access to /usr/local/gnome/, firefox is a gnome application”.

Function OS Resource(s) protected How
Restricted To-
kens

Windows system calls, rate limit, file system Restricts system calls and OS enforce-
ment.

chroot Unixes file system, file system accessible OS
controls (/proc)

Changes a processes perceived root
folder.

SIGSTOP & Nice Unixes CPU Suspends a process or decreases the
number of cycles it is scheduled for.

rlimit Linux, Solaris Memory OS kills process if it goes over set limit.
ulimit Linux, Solaris Open files, number of children, num-

ber/size of pipes, stack size, CPU time,
number of locks

Kill processes if user goes over set lim-
its

DEP, ASLR Windows,
Linux

Program instructions Randomizes locations of things
mapped into memory so that no
absolute offset will ever work in an
attack.

Containers Solaris File system, process control, network OS mechanism to force processes to
work in same group only.

Jails FreeBSD File system, network addresses OS level mechanism.
LXC Linux File system, processes control, net-

working
Linux kernel extension.

Linux-vservers Linux File system, process control, some net-
working

Linux kernel patch.

AppArmour Linux File system Linux kernel extension.
SELinux Linux File system Linux kernel extension.
Native Client Windows

Linux Mac
Everything except CPU Block system calls to everything, then

pipe resources back from the browser.

Table 5.3: Sandboxing related OS functionality.

5.2 Systems Providing Sandboxing

There are several sandboxing systems with similar intent to Lind, that I will dis-

cuss in more detail now. Xax [28] has goals very similar to Lind and NaCl, as it

aims to provide a light-weight, secure sandbox for running legacy applications in web

browsers.

Xax introduces the idea of a picoprocess, a replacement for a hardware VM with

an application level API instead of a hardware API. The Xax hypervisor runs in a

web browser, and downloads untrusted programs, it then loads those programs in a

103

specially constructed protection domain. This protection domain is constructed using

the OS’s mechanisms for controlling system calls. In the case of Linux, this is using

the ptrace system call to perform system call interposition. Inside the picoprocess is

a portability layer that converts requests for resources into a platform specific format

then makes a xaxcall, (similar to a hypercall in a hypervisor) or system call, to get

the request resources. These request are then satisfied by the web browser.

Xax is a very interesting system in the context of Lind. It is similar in many

ways. Lind uses SFI to block system calls, whereas Xax uses OS mechanisms. Xax

programs can run at full native speed, Lind programs have the runtime overhead of

SFI; however, as is pointed out in their paper it is possible for a untrusted program

in the sandbox to escape and run at full privilege if the parent crashes, this is not

possible with SFI. Furthermore, SFI can be validated at load time, to ensure an unsafe

program is never executed at all.

Both Lind and Xax transfer system calls to another process to be serviced. How-

ever, the Xax system call servicing code is part of the TCB, whereas it is not trusted

in Lind. Xax claims a small change to the TCB of about 5000 SLoC, and that its

TCB is small relative to an OS. It is hard to gauge what this means because the Xax

paper does not mention if the implementation is in a type safe language. Xax’s TCB

is not small because it must include the browser as well.

Xax takes a more cavalier approach to running legacy applications. Lind tries

to run legacy application as-is, with no changes to the source code or application

semantics. Xax requires modifications to the legacy code, but more worryingly, in

some cases when provided services would be hard to implement in the Xax model, they

modify the semantics of the system. Examples of that are using a RAM file system

instead of a persistant file system, and applying the browser’s single origin policy to

all socket connections of the program. Modifying the system’s semantics—that will

104

System CPU Memory System call Provider File system Network
Xax No Yes Browser Ramdisk Javascript’s
NaCl No Yes Browser Limited Javascript’s
Lind Yes Yes Repy Full Full
Windows Yes Partial OS Restricted Restricted
Ostia Some Yes Process Full Full

Table 5.4: Comparison of some similar systems to Lind, and what they isolate.

surely violate some developer’s expectations—then applying Xax to 3.3 million lines

of pre-existing code without any discussion of the impacts to the functionality of the

code is problematic.

In the context of Xax’s goals—to run legacy applications from the web, in a web

browser—those trade-offs make sense, but as a general purpose platform for running

legacy applications Xax is lacking.

Xax showed best case performance which is better than Lind’s and showed worst

case performance much worse than Lind’s. Xax has slightly better native code per-

formance because it does not encounter the overheads induced by SFI. Xax I/O per-

formance was similar to Lind, they state it is in the range of 7x to 161x slower. Xax

also does not deal with resource exhaustion style attacks. Further, the Xax sandbox

does not allow for anything but user-threading—effectively limiting the applications

scalability on modern hardware.

5.2.1 System Call Interposition

The key to accessing resources in a program is through the use of system calls into

the OS, so working at the system call level can be another effective mechanism for

sandboxing. Instead of rebuilding an OS to change the way system calls work, modi-

fying calls as they happen though system call interposition (SCI) can offer a number

of advantages that make it attractive for building sandboxes. This is similar to the

approach that Lind takes; however, the key difference is that SCI systems normally

105

just allow or disallow calls, they do not reimplement the servicing of the call as is done

in Lind. When interposing on system calls, a system can delegate calls or filter them.

Filtering systems approve or block the system call, then make the real OS system call,

delegating systems approve or block the call, then send them to another user-level

process to make the actual resource request. Approaches for delegation and filtering

have been extensively studied, along with their respective trade-offs with security and

performance [71]. Janus Version 2 (J2) [72, 73] uses filtering and sandboxing, while

Ostia [71] (like Lind) uses delegation. A key observation about SCI is that it can be

error prone [74]. Garfinkel [74] identifies several common points of pain for filtering

SCI systems, which could equally apply to Lind, so I will discuss each below. Ostia

also provides a hybrid interposition architecture, that allows for kernel-level enforce-

ment and user policies. The kernel module enforces policy, denies direct access to

restricted resources, and delegates certain calls to the emulation library, that sends

transformed system calls to agents. An agent reads the policy file and handles the

delegation of calls.

The first point of pain mentioned is incorrectly replicating the OS functionality.

SCI systems need to exactly match the underlying OS, because they emulate the OS

to make policy decisions. This can manifest as not mirroring OS state correctly, for

example not tracking all calls which modify a file handle, or manifest as bugs from

not implementing the full OS functionality correctly, for example the canonicalization

of path names is complex and error prone. Lind does not suffer from this class of

errors, because it does not mirror the OS code, but rather actually implements its

own library OS. A bug in Lind state or code only causes the application running in

Lind to experience unexpected behaviour, unlike SCI systems where it results in a

violation of the security constraints.

Overlooking indirect-paths to resources is the second point of pain. In a read-only

106

file system policy examples of this include: using Unix domain sockets to write to

the file system, allowing the OS to write a core dump to the file system, passing

already open discriptors to the application so it can write through them, and having

another process do the writing such as the local DNS daemon. In Lind, because the

primitive operations of the Repy sandbox are so simple, none of the situations listed

are possible in Lind. It is also important to note though that Lind (intentionally)

does not implement the functionalities listed in the examples above.

Race conditions are the third point of pain. They do not effect Lind for two rea-

sons, first, to simplify the prototype implementation Lind uses a global lock, second,

Lind makes all the metadata calculations itself, and does not use the OS metadata

(because it is not available), so there is no chance of unexpected state changes.

Incorrectly subsetting a complex interface is the fourth point of pain. This is the

situation where the interface selected still allows some forms of attacks. In the case

of Lind, this is not possible in the sandbox; however, it may be possible if the Repy

system call API has preexisting problems. The hope is that the Repy API is small

enough, and well enough thought out that it does not have this kind of problem.

Lind also side steps this issue with a global lock, and by not guaranteeing that what

Lind provides in a system call is exactly what the real OS would provide. The global

lock makes sure that only one system call is executed at a time which will impact the

performance of multithreaded code.

Sandboxing is a good first step to building more secure systems. None of the

sandboxes discussed here claim to solve system security in general. In fact, as they

are used more heavly, it is likely they will introduce new security problems of their

own. Because of the nature of the security problems discussed above, sandboxing

can only help solve some of those problems. Sandboxing does have some concrete

107

security benifits though, so sandboxing is nessessary but not sufficent for securing

legacy applications.

5.3 Alternate System Structures

There has been a lot of work isolating applications in the context of virtual memory.

Multics introduced memory protection hardware and CPU based ring protection levels

[43,75]. Multic’s segmented- and paged-memory protection and ring-based instruction

execution now form the basis of how modern x86 processors and OSes isolate processes

from each other and the OS—though Multic’s protection was only at the segment-

level, not a page-level.

Outside mainstream OSes, several research OSes have introduced novel isolation

and sandboxing primitives. Palladium is an intra-address space isolation mechanism

that is aimed at making dynamic software extensions and components safe using com-

modity x86 hardware memory protection [76]. For kernel-level extensions Palladium

runs each extension in a separate x86 segment, in the same address space, but with

different protection levels than the main OS. For user-level extensions Palladium ex-

ploits page-level and segment-level protection hardware so as to make the changes

to the application minimal. Mondrix [77] is research prototype of Linux that uses

Mondriaan Memory Protection (MMP)1 a hardware and software intra-address space

memory protection scheme to enforce fine grained isolation. Much like Nooks [79],

Witchel et al. use Mondrix to isolate Linux device drivers to stop them from crashing

the system. MMP hardware does not actually exist, however it could provide more

fine grained isolation than NaCl, without having to recompile, and with less overhead

1In the literature Mondriaan is spelt with both one “a” and two. In their first paper the authors
mention that the work was named after the famous painter Pieter Cornelis Mondriaan, who later
changed his last name to Mondrian [78].

108

than SFI [80]. MMP itself does not allow for system call blocking and filtering like

NaCl does though.

Lind shares some things in common with Exokernel and Microkernel OSes. Ex-

okrenel type OSes try to change the primitives that the OS exposes to the user-level

application so that they can have more control over the hardware [81,82]. Exokernels

are motivated by extra performance for applications that have unusual resource access

patterns so standard one-size-fits-all OSes perform poorly. This leads to applications

implementing the OS primitives that best suit the application at user-level [83]. Mi-

crokernel OSes, for example Minix [84] and L4 [85], try to reduce the kernel size by

providing as much functionality as possible as user-level services, which other pro-

cesses can then access. By doing this they make kernel services easier to build and

maintain, and also gain many favourable security traits [86–90] even the ability to

transparently distribute work and data over a LAN [91]. Pioneered in Nucleus [92],

microkernels most commonly keep virtual memory, scheduling and IPC functionality

in the kernel, but move all other services into user-level processes. In fact, a common

microkernel design principle, Liedtke’s minimality principle, says:

“A concept is tolerated inside the microkernel only if moving it outside

the kernel, i.e., permitting competing implementations, would prevent the

implementation of the system’s required functionality” [93].

Like Lind, in a microkernel a program must access resources though IPC, and

like Lind the user-level isolation of microkernels makes them more secure. Similarly

to Lind, both exokernels and microkernels allow customized user-level services to be

written to provide applications with resources—most common are network and file

system implementations. Micro-kernels are known for their complex performance

trade-offs [93]. Kea [94] is an OS that can dynamically include services in the kernel

109

or run them at user-level and even restart and replace services, thus allowing the

system to restructure itself as needed.

It has also been proposed that the Microkernel and Exokernel models are perfect

for the development of extensible applications [95]. This observation comes about be-

cause most applications are structured around the use of shared libraries and services,

common pieces of data and implementation shared between many processes in the

system. Banerji conjectures that structuring a whole system into modules, then using

call gates to control how they communicate could be an effective way to recompose a

system [95].

Virtual Machines (VMs) run by Virtual Machine Monitors (VMMs) divide the

system up as abstract machines with the same interface as the underlying hardware

[44]. Some popular notable VMMs are Xen [47], VMWare [46] and KVM [48]. Others

have argued that instead of providing the OS interface to programs like microkernels

do, the best way to securely divide work on a system is to use VMMs then replicate

the OSes [96] in each VM. VMMs have been shown to have very good temporal- and

spatial-isolation [8], except in a few situations [97]. The reason VMMs work well

is that the hardware interface is very simple compared to almost any other API. In

the context of running applications securely, VMs are very high overhead, each VM

must run an entire instance of a OS inside itself. Mirroring the problems with early

microkernels, VMMs have the problem of a large TCB, so there has been lots of work

to factor parts of VMMs into VM level services [98,99]. Also mirroring microkernels,

the Denali Isolation Kernel attempted to make very lightweight VMs, so that each

application on a machine could run in a separate VM [100]. This was also the goal of

the Windows feather-weight virtual machine (FVM), another OS-level VMM, which

attempts to make single program VMs possible by aggressively sharing resources

between VMs, but still trying to maintain strong isolation properties.

110

Drawbridge [14] is a research OS that uses lightweight processes and a library OS

to present a Windows persona to a wide variety of Windows applications. This is

accomplished by moving a large portion of the OS into the process, and presenting a

simplified system virtual machine like interface to each process. This approach brings

many of the benefits of VM based temporal, spatial- and fault-isolation properties to

a per-process level.

Wedge [101] is a system which provides fine grained isolation to applications so

that the POLA can be concretely applied to individual parts of an application. Wedge

uses the native Linux protection mechanisms, fork, threads, and shared memory, to

make it easy for a developer to decompose applications into compartments. An in-

teresting design methodology about Wedge is that, unlike the OS, by default Wedge

grants no privileges to each compartment. This is an effective way to push the ap-

plication closer tos conforming to the POLA. Wedge provides a tool called Crowbar,

which helps the developer figure out how to decompose their system. Crowbar helps

developers deduce which code will need what privileges, thus allowing each compart-

ment to have minimal permissions. From a security engineering standpoint Wedge is

a great idea; however, each application has to be refactored by a developer to run in

Wedge compartments. Wedge does not introduce an isolation mechanism, but rather

shows us how to better make use of existing mechanisms.

Another system which tries to make better use of existing isolation mechanisms

is Ribbons [102]. Much like Wedge, Ribbons uses fork and shared memory to make

isolated containers; however, Ribbons uses them to create a new container permission

model, more fine grained than threads. Ribbons does this by introducing RibbonJ—

an extension to the Java language. Each ribbon is composed of at least a single thread

and some Java objects. Ribbons can then grant permissions to other ribbons to inter-

act with them, and create new threads and objects. RibbonJ provides new language

111

constructs to make ribbon interactions easy to define and understand. Ribbon’s most

interesting evaluation target is the Tomcat server, which hosts multiple untrusting

web applications. This is a case of language virtual machine multitasking, which is a

hard problem because of the resource sharing which must go on [103].

Building on type safe langages is another way to build sandboxes. Type safe

langages can prevent buffer overflows and stack smashing attacks. In the OS context,

the SPIN OS was built in a type-safe language [104], and more recently, the Singularity

OS is a microkernel which was built in C# [105] and runs applications compiled with

a custom compiler. The challenge with both OSes and applications built in type-

safe languages is obtaining the best performance. This challenge stems from two

factors: the overhead the langage imposes at runtime to check types that could not

be statically checked, and the inability to access low level system features like pointers

and CPU features.

System Intended Target Mechanism(s) of isolation
Xax&NaCl Browser Send all resource requests back to the browser.
Ostia&Janus All Stop all system calls and check them for safety.
Palladium Extensions x86 memory isolation and gates.
Mondrix Extensions Special hardare.
Nooks Kernel Extensions SFI and hardware.
Exokernel Whole system Direct hardware access to a library OS and RPC communica-

tion.
Microkernels Whole system Address spaces, RPC, protected procedures.
Ribbons Java modules processes, shared memory, Java extension.
Drawbridge Windows applications Provide address spaces and block devices to library OS.
SPIN Spin applications Type safe language.
Singularity Singularity applications Type safe language.
Wedge Application Extensions Linux mechanisms, POLA.
Virtualization OSes Hardware support, or paravirtualization.

Table 5.5: Research systems providing isolation.

System Level Provided from Mechanism(s) of isolation
Xen Hardware Hypervisor Separate pages tables, virtualization hardware, multiplexed

device drivers, paravirtualization.
VMWare Hardware Hypervisor Instruction rewriting, multiplexed device drivers.
KVM Hardware Linux kernel Extends Linux kernel using hardware virtualization support.
Vservers System call Linux kernel extended kernel data structures.
LXC System call Linux kernel Minimally extended kernel data structures.

Table 5.6: Virtualization systems providing isolation.

112

5.4 Sandboxing in Applications

There are some well known cases studies in best practice application specific sand-

boxing, I will now discuss the OpenSSH server and Google’s Chrome web browser.

Both these applications have to be very security conscious because they receive arbi-

trary input from the internet—placing them both in a high risk situation for remote

exploits.

Among the most dangerous OpenSSH bugs are those called “pre-auth exploits”,

these are bugs which can be exploited before an authenticated encrypted connection

can be established. They are particularly worrying because the attacker does not

need to be able to log into the system. Further compounding the situation, because

the OpenSSH server must operate as many different users and create new pseudo-

terminals it must be run as root. Therefore, when the server is compromised the

attacker will have root privileges. The OpenSSH server has done several things to try

to reduce the chances of these bugs impacting the system before they can be correctly

patched. In 2002, Niels Provos of the OpenSSH project started work on something he

called “Privilege Separated OpenSSH” [106, 107]. On the server, running each client

connection in a separate isolated process was the goal of the project. The project is

now part of the mainline OpenSSH server. In the initial implementation a child was

created on every network connection, the child was given the open socket, ready to be

read from, then the child had to report back to the parent the status of the connection.

The idea was that if an attacker was somehow able to exploit the server, the only

thing they would have access to is the child’s memory, not the entire server. The

child was isolated by changing its GID and UID so that it could not access any files

or other processes, and isolated by running the child in a chroot jail, as described in

Section 5.1.1—this effectively makes a child which has no process privileges or access

to the file system. When the child says that the connection is valid through the very

113

narrow API with the parent, it is replaced with a post-authentication process. This

process has the privileges of the logged in user, but still needs to contact the parent to

perform more privileged operations like creating new terminals. The approach taken

is quite specific to the OpenSSH server and its needs, but does provide a good case

study of how to build a high security network application.

The Chrome web browser from Google must be able to tolerate all sorts of attack

types, spanning malicious content types to buggy JavaScript programs. Sandboxing,

applying frequent automatic updates, and blocking known bad sites are 3 techniques

Chrome uses to be more secure [24]—sandboxing being of interest to us. Chrome keeps

each webpage’s rendering engine in a separate process, and using a defence-in-depth

strategy each process is wrapped in 3 layers of sandboxes. The inner-most sandbox is

a JavaScript language sandbox. The secondary sondbox employs intra-process tech-

niques like ASLR. The outermost sandbox (similarly to the OpenSSH sandbox) is

a OS sandbox which limits what the renderer process can do. The rendering pro-

cesses are controlled by a higher privilege browser kernel, which also uses the second

level sandbox from above. Like the OpenSSH sandbox, the Chrome sandbox makes

the renderer processes communicate with the kernel to get access to files and user-

information such as cookies and histories. Some challenges the Chrome sandbox faces

is that some renderers actually need to communicate with each other, for example

frames on the same webpage. Also plugins like Java and Adobe Flash cannot be run

in the renderer sandboxes because they expect more access to the underlying OS.

5.4.1 Software Fault Isolation

Lind uses NaCl as a binary sandbox, so it is important to expand the discussion in

Section 2.2 about how NaCl and SFI work.

The foundational work of instruction re-writing for safety was originally presented

114

by Deutsch and Grant [108]; however, their technique was not for general programs.

Software Fault Isolation (SFI) was pioneered by Wahbe [15] et al. as an alternative

to hardware memory protection for running two untrusting programs in one address

space. The motivation for this is speed, because separating two programs as processes

introduces communication overhead which is unacceptable in some cases—mainly

program extensions or plugins. Since the two programs do not trust each other,

there needs to be a mechanism to isolate them. In SFI’s case, it isolates memory

writes and code jumps so the programs cannot write into each other’s memory or

execute each other’s code. SFI restricts the execution of native applications so they

cannot execute (write or jump) outside a “fault domain”. However, unlike virtual

memory address spaces, transfer of execution between fault domains is fast because

there is no hardware context switch involved. SFI is able to make execution safe by

restricting what instructions can be executed, so control flow is restricted to a region

of memory. SFI is able to load two programs into one address space, but not allow

them to interfere with each other except via a specific interface. This type of isolation

is spatial only, the programs can still effect each other temporally. In SFI system calls

can be prevented from happening in one of the programs by disallowing the system

call instruction, thus allowing one program to act as a trusted resource provider to

the other—the approach NaCl has taken.

SFI is a type of proof-carrying code (PCC) [109] because its structure can be

formally verified before it is run to prove its runtime constraints. PCC systems

have been used to make many other interesting systems; for example, a provably

safe ML byte code [109], a safe kernel-level packet filter, and a safe efficient garbage

collector [110].

Wahbe’s SFI implementation worked on MIPS and Alpha, both RISC architec-

tures. McCamant and Morrisett introduce a SFI implementation called Pittsfield,

115

for x86-32 [111]. Pittsfield pioneers the current state of the art techniques in CISC

SFI sandboxing, and describes many optimizations to offset execution throughput

disadvantages. Pittsfield is evaluated in a compression program which includes the

compression library in the compressed file, introducing a interesting situation where

data and code are packaged together, but the code should not be trusted.

NaCl is a modern implementation of SFI for x86 [12] and later x86-64 [35], which

is similar to Pittsfield; however, instead of attempting to run two programs in one

address space, NaCl runs one untrusted program and a trusted runtime to service the

untrusted application. NaCl’s intent is to let web browsers safely run untrusted—

computationally intense—native code. NaCl is not focused on running two programs

in one address space, but rather executing one untrusted program while disallowing it

access to the operating system in any unforeseen way, so NaCl is similar to the system

call inter-positioning sandboxes mentioned in Section 5.2.1. Games, 3D, sound- and

image-processing, are all categories of web applications that could possibly benefit

from deployment in NaCl.

NaCl uses static analysis to check code constraints. Instructions in x86 have

variable width. That variable width makes it very hard to verify, for any given

address, if a verifier is looking at the start or middle of an instruction. One of

NaCl’s techniques to build verifiable x86 code is imposing an instruction alignment

pattern. NaCl makes use of a modified version of the GNU GCC compiler to produce

verifiable native code for x86, x86-64 and ARM. Because of the restricted subset of

native instructions NaCl uses, it can verify that the program can never violate the

sandbox. Verification of code happens as it is loaded into memory, then the code is

marked readonly so it cannot be changed by the program. The sandbox guarantees

the program can never write to memory outside the sandbox or allow the control

flow to move outside the sandbox without first passing through a trampoline which

116

the system controls. More recent work has shown that dynamically loaded libraries2

and JITed code can be safely loaded into the system with a modified verification

process [112], opening the possibility of using more elaborate programs like language

virtual machines and programs which dynamically add extensions. Recent work has

used formal methods to prove the NaCl verifier correct [113], further helping us trust

there is no way to escape the NaCl sandbox.

NaCl can run most programs; however it presents a different system call interface

from a POSIX system. The system call interface is that of JavaScript run in the web

browser. The program has access to the web browser’s DOM and functionality, but

the actual system API NaCl presents is very limited, with only simple file operations

(open a local file, read, write, close), and no networking except those provided by

the JavaScript web-sockets interface. These abilities are only satisfactory for simple

applications, and quite often significant effort is required to port an application to

NaCl as is evident by the existence of the NaCl-ports project [16], a collection of

pre-ported software. The way Lind safely expands the NaCl system interface is by

using another sandbox which can safely access system resources.

Vx32 is a runtime with similar goals to Lind and NaCl. Vx32 is a user-level

library that allows sandboxing of a program with SFI, and then restriction of which

system calls the restricted program can make. Unlike Lind it does not deal with

temporal isolation. Unlike other SFI work, Vx32 does restrict both reads and writes

between fault domains, though it has a 30% overhead, higher than that of previous

work. Like Palladium, Vx32 uses the x86 segmentation hardware to control data

reads and writes. To guard control flow, Vx32 uses dynamic instruction translation.

2Typical Linux shared libraries (DSOs) were already supported because they are loaded at pro-
gram start, dynamic loading is done by systems using the dlopen, dlsym and dlclose calls in
the libdl.so package. Web browsers and apache are good examples of applications which load
extensions this way.

117

In programs with a lot of computation Vx32 will be very fast, but in programs with

a lot of control flow, Vx32 can be 2 times slower than native.

Castro at. al introduce a SFI system called Byte Granularity Isolation (BGI) for

retrofitting SFI fault domains onto existing device drivers [114]. They observe that

finer granularity is needed to isolate kernel modules, and present a SFI system which

isolates at a byte-granularity.

XFI is another modern SFI implementation that makes use of SFI’s static verifi-

cation, in-line guard checks and twin execution stacks. Guard checks are responsible

for checking properties that cannot be statically verified. Guard checks can be in-

serted: manually, by the compiler, or through binary rewriting. Since their checks are

software based, they claim to be very flexible in the types of checks they can perform,

and be very architecture independent.

MisFIT [115] is another x86 SFI implementation which is used in VINO [117],

which is discussed below. MisFIT makes the observation that object oriented pro-

gramming lends itself well to program extension, and allows the developer to structure

their extension system around C++ objects which are contained in SFI containers.

MisFIT implements its own x86 SFI system, though since its security properties were

weak and not verified, their results are not well accepted [111].

Of all the SFI implementations discussed here, the only one deployed and sup-

ported in a major way is NaCl, making it the best choice for Lind.

Uses of SFI

SFI has been used in some interesting ways. Nooks [79] isolates Linux kernel modules,

so that when they crash the whole kernel does not crash as well. They use two

techniques: sandboxing and micro-reboots. Nooks uses both a SFI-based and user-

level sandbox. Micro-reboots conceptually refresh small parts of the system. Engler

118

System Use Mechanism
Wahabe’s
SFI

Isolating extensions MIPS and Alpha instruction replacement.

Pittsfield Isolating extensions x86-32 instruction replacement.
NaCl Isolate untrusted

browser extension
ARM and x86 instruction replacement and instruc-
tion clustering, dynamic code insertion, system call
restrictions, dual sandbox.

Vx32 Isolate extensions Read and write restrictions + easy user-level library
interfaces.

BGI Isolate existing ker-
nel extensions

byte-granularity isolation domains.

XFI Isolate extensions instruction replacement, dual stacks, guard checks
in non-verifiable locations.

MisFIT The VINO OS Isolate C++ objects in SFI domains.

Table 5.7: Systems that use SFI.

[116] suggests using SFI as a secure means of extending kernels, giving Exokernel like

access to raw resources without the usual resultant system structure. In VINO [117],

Small suggests the same thing with the context of making RDBMs faster [117].

Binary rewriting techniques, similar to SFI, can be used to do other interesting

things like provide transparent cross-architecture compatibility [118]. In that work,

they transparently ported x86 Windows NT applications to the Alpha platform.

5.5 Security and Lind

Table 5.8 revisits the common security weaknesses listed above, and discusses how

Lind impacts each of them. Lind helps with many of them. In most cases it does

not deal with the problem directly, but rather isolates the program so that after the

problem has occurred nothing beyond what the policy specifics can happen.

Beyond these, Lind may have some other impacts on security. Lind’s interface

with the system is very simple. So simple it might make it possible to apply formal

verification techniques on the interface.

119

Lind may also have some negative security impacts. Lind could open up new

side channels which might be exploited. The Unix domain socket might be one such

channel. Other good security practices like whole system logging are harder with

Lind, because there is no shared file system to log to.

5.6 Summary

There are a broad class of security problems which are caused by the lack of isolation

in a system. Some problems like buffer overflows and injection attacks are related to

system implementation, while others like insecure data storage and network commu-

nication are a result of a poor system design. Decades of OS research has produced

many interesting isolation mechanisms with many differing intents. When these mech-

anisms can be used to stop an attack, or limit the scope of an attack they become

interesting from a security point of view. Multics pioneered process level isolation,

with new mechanisms like hardware assisted virtual memory. Because the chief task

of OSes is to multiplex and share resources, many isolation technologies have sprung

up in modern OSes to help isolate programs when necessary, and all modern OSes

have some mechanisms to impose isolation. Jails, containers, and subprocesses with

restricted rights are just some of the ways modern OSes like Linux, Windows and

Solaris isolate workloads from untrusting parties.

Research systems span the gamut of isolation granularities, all the way from the

ultra-fine grained isolation of MisFIT, RibbonsJ and BGI, all the way up to per-OS

isolation modern VMMs like Xen and Drawbridge provide. These systems all intend

to isolate extensions or subprograms of some sort, and, within that space isolate

different resources, with varying levels of overhead in terms of memory, execution

time and even programmer effort.

120

Like all the systems discussed here, Lind intends to isolate programs. It does

so with a lightweight isolation mechanism SFI, provided by NaCl. SFI systems uses

instruction level manipulation to produce code that can be verified to be safe—safe in

that it can not leave the sandbox. Lind sandboxes applications on a per-process level,

much like Xax and NaCl, but does not use a browser as a trusted resource provider.

121

Problem Effect of Lind
Buffer overruns Lind will isolate the in program so any injected

code will have the same capabilities as the original
program.

Uncontrolled format string Lind will isolate the in program so any injected
code will have the same capabilities as the original
program.

Integer overflows Lind will isolate the in program so any injected
code will have the same capabilities as the original
program.

SQL injection Lind does not help.
Command injection There is no forking in Lind, so no command injec-

tion as well.
Failing to handle errors When program is in unexpected state it still can

only do what its policy allows.
Unprotected network traffic Repy can transparently encrypt TCP connections,

this has never been tested in Lind though.
Weak passwords Lind does not help.
Storing data without pro-
tection

Repy can transparently encrypt data before send-
ing to disk.

Information leakage Lind can block some standard channels for leak-
age (like network) for applications which don’t use
them.

Improper file access
(TOUTTOC1)

Lind file systems are not shared so this is not pos-
sible.

Trusting network name res-
olution

Lind does not help.

Race conditions Lind does not help.
Strong random numbers Lind replaces all random numbers in the OS with

strong random numbers.
Poor usability Lind does not help.
Improper pathname Less likely because file systems are not shared.
Download without integrity
check

Lind does not help.

Untrusted functionality Lind does not help.
Use of dangerous function Dangerous functions can only do as much as the

policy dictates.
Unnecessary privileges Lind reduces the default privileges an application

has, and requires a application policy to have more
privileges enabled.

Incorrect permissions File systems are not shared, so this won’t matter

Table 5.8: Common security weaknesses and how they play out in Lind.

122

Chapter 6

Future Work and Conclusions

There are several parts of Lind which, if developed, could significantly improve the

viability of Lind as a platform for legacy applications. Missing system calls and

performance are two opportunities I will discuss here.

6.1 Missing System Calls

In the development of Lind, as they have been needed, new system calls have been

added. However, there are some system calls that do not fit into the Lind model as

easily. Two outstanding system calls that are used heavily are fork and its relatives

and mmap. fork and mmap both pose a particular problem, because their implemen-

tations cannot be easily executed in another process, then returned through RPC.

In Unix based systems, process creation happens using the fork then exec model.

One of the modifications made to Repy is a function that launches a NaCl subprocess

with a pre-set executable in it. The fork model is hard for Lind because the child

should be a duplicate of the parent. There is no easy way to support this in Lind.

While not modifying the TCB, the only way to accomplish this would be to copy the

entire stack and heap out of the NaCl untrusted process, make a new NaCl process

123

with Repy, then copy all that data back into the new process. This operation would

be slow, and hard to build. Fork is thought of as a lightweight process creation

mechanism because it can use copy-on-write, and this assumption would be violated

by this type of implementation.

A second simpler implementation would be possible allowing the fork system call

to work in NaCl. This would allow the native OS’s fork to duplicate the process. This

would require some adjustment to how Lind currently handles the resource connection

sockets with Repy and an update to the accounting code for resources. It also raises

the question whether it breaks Lind’s isolation to have two processes sharing the same

Repy instance. In terms of isolation fork has to be handled very carefully. Of course,

unrestricted forking should not be allowed, so it would have to be rate limited. Like

Repy’s CPU monitoring process, the children of the NaCl process could be checked to

make sure they are not spawning out of control, and since Repy creates the original

NaCl process, it will have the OS’ permission to kill the children. Further work would

have to be done to ensure that a forked NaCl process is still as secure as the original

and that forking does not violate the sandbox integrity.

Exec also poses an interesting problem. NaCl provides mechanisms for dynamic

code loading; however, they were designed to work in the context of JIT compilers

[112] and the loading of libraries. It may not be possible to replace the entire process’

address space because those tools were not built to work at that scale.

Mmap poses less significant engineering challenges, though it still does not easily

fit into the Lind model. Mmap is used for shared memory access and file access,

the later is what I will discuss here. With respect to file access, it is used for easy

serialization of pointer based structures, as well as for fast random access to large files.

Simple mmap could be implemented by copying the file into the memory requested,

124

then checking if the memory has changed. The problem with this approach is that

mmap is normally used for performance reasons, not just for file access.

Modifying the implementation of NaCl, a simple demand paging scheme could

be implemented that marks all the pages of the mmaped region as not accessible,

then catches the signals the OS sends to NaCl when the pages are accessed. This is

similar to how some JVMs do garbage collection [119]. This approach presents some

interesting security challenges, as it would be possible for malicious signals, or too

many signals to be generated. By default NaCl disables most signals so that they are

unable to interfere with its operation. It remains to be seen if signals can be delivered

while running untrusted code, and still be serviced safely.

6.2 Lind’s Performance

Performance is important to Lind. NaCl’s execution is quite fast, but the dual-

process model Lind uses introduces some overheads. Repy is not optimized for system

access, but rather for safety. There are two ways in which Lind’s performance can be

improved: removing the IPC overhead and optimizing Repy.

In recent builds of Lind, the Python profiler is able to operate in Repy—something

that was previously not possible. A significant portion of Lind’s overhead while

servicing system calls comes from Repy, and those overheads can be broken down to

a few things: slow marshalling code and slow Repy API calls.

Early in the development of Lind a struct module had to be written. Its job was to

covert a Python string containing a struct into a list of corresponding Python types.

For example, a C struct containing an int and a char * would be converted into a

list with a Python integer object and a string object. This conversion is very slow,

since it does not use native types, but rather arithmetic. For instance the Python

125

integer would be created by reading 4 bytes from the string, then using bit operations

and arithmetic to compose the integer. The justification for this is that it is a totally

in-Repy solution, and never leaves the sandbox. Python has a real struct module,

that uses C code to convert the types, and it is efficient. If it were ported to Repy

that could speed up Lind. Even if the TCB could not be expanded with the struct

module, the existing Repy struct module could probably be optimized somewhat, for

example, by using an 8 bit indexed look up table instead of the bit shifting arithmetic.

Perhaps the largest hit to Lind’s performance is that of Repy’s system calls. In

recent benchmarking, it was found that Repy’s file I/O operations are more than

10 times slower than the corresponding Python operations. If some effort could be

applied to speeding up these system calls it could provide a significant performance

boost to Lind applications which make a lot of system calls.

Finally, Lind’s performance is hampered by the dual sandbox model. The dual

sandbox was used to provide more layers of security and simplify the TCB imple-

mentation of Lind. A possible alternate design would load Repy and NaCl into the

same address space. This was a design called Fast Lind . Fast Lind is a tradeoff, since

there is no IPC overhead or marshalling overhead, therefore, a lot of Lind’s overheads

would disappear; however, it would be much harder to guarantee the safety of Fast

Lind. NaCl makes many security assumptions. For instance, it disables signals, and

runs itself in a chroot jail. To make Repy work inside of NaCl, the entire Python

interpreter must be run inside of the NaCl TCB. Python requires access to signal

handlers and files which NaCl by default bans. It may be possible to run the two in

the same process; however, the security ramifications may be subtle, and the TCB

complexity will increase drastically. In the initial prototype of Fast Lind, Repy was

able to run in NaCl, but it caused the process to segmentation fault on occasion,

126

testament to the complexity1 of this kind of implementation. With significant work,

Fast Lind would be possible.

Lind’s startup performance is also relatively slow. Both NaCl and Repy (including

Python) have to be running before a Lind application can start. One way to amortize

this startup overhead is to keep a clean copy of Repy and NaCl running, then fork

them for each new Lind program, instead of launching them from scratch. This would

require some changes to the program handling in several places in Lind, but still may

be worth the time savings.

6.3 Lind Cloud

Using Lind as a PaaS cloud might also be an interesting opportunity. Since applica-

tions run in complete isolation from each other and are relatively light weight, Lind

could make an interesting scalable cloud platform. Some issues that would have to

be addressed are how Lind instances are controlled remotely, how their I/O is han-

dled, and how a program and data are packaged, and what sort of remote data access

should be provided. If files in the cloud can be accessed, Lind could be used as a way

to move computation to data.

6.4 Access to Data

Especially in the context of Lind cloud, one important feature would be to provide

access to local data either in the form of local devices such as web cams and other

sensors, or provide access to sets of local files. Local file access, beyond simple access

though copying files to the LindFS that is already provided by Lind, would give direct

1Complexity is always the enemy of security minded systems.

127

access to large files or changing files on the system. One device Lind already provides

access to is the system’s random number generator.

Device access would not be technically hard, instead the complexity of the system’s

policy and security guarantees become harder. For example, if it is possible to modify

the Lind processes through the file system (in Linux this would be the /proc/ files),

the direct access might be used to escape the sandbox. Some thought would also have

to go into a scheme for authorizing which files should be accessible. One way to do

this could be through a manifest or some other extension to the Repy policy file that

explicitly lists files which are accessible.

6.5 MacroComponents

One prototype built was for a Lind component model. In this model each software

component was placed in a separate NaCl process, and interactions between them were

done with message passing. Communication was asynchronous, so that components

could not block the progress of other components. Components could not access

each others memory, however they did share the same system resources. This kind

of component model allows for the construction of very interesting systems. This is

in some ways similar to the motivation of Wedge [101]. This gives the developer a

way to decompose an application into well structured components, each isolated from

the rest of the application. This might be easily applied to shared libraries that are

loaded into an application, as they provide a well known and natural interface and

fault domain.

128

6.6 Better Policy Enforcement

One issue with Repy, and Lind in general, is that building a good application policy

is hard. The policy should try to be minimal, but still not block the application from

normal operation. AppArmor [120] and Wedge [101] both come with tools to help

the application developer determine a good policy. However, they are both limited

in scope.

One approach that might work for Lind is to determine the program policy by ana-

lyzing strace logs of correct (however that is defined) runs of the application. Whether

this is possible or not, the effectiveness of Repy is based on good polices, so developing

them should be studied in more detail. One area that might provide inspiration is

mobile OSes, which also use policy to allow applications access to resources.

6.7 Conclusion

In this dissertation I motivated, introduced and evaluated a sandbox for legacy appli-

cations called Lind. Lind was designed to run existing legacy applications written in

C while maintaining C’s good portability, performance and memory footprint. Lind is

a combination of two sandboxing technologies: NaCl and Repy. The combination of

these two allows for applications to be run in their binary format, but allows Lind to

have a small TCB and simple design. I evaluate Lind on several micro-benchmarks to

establish some performance characteristics then run several large legacy applications

in Lind. The evaluation shows that Lind holds promise as a sandbox, though an in-

dustrial strength implementation would need to focus more on performance. Lind has

some limitations because of the two sandbox model, as some system calls are more

difficult to support. Despite this, I have shown that Lind provides an interesting

point in the trade-off space of isolation and container granularity.

129

Appendix A

Additional Information

A.1 Software Tested in Lind

Programs
Name command(s) Source
K&R Cat cat from “the C programming language” [121]
GNU Grep grep, egrep version 2.9
GNU Coreutils md5sum, cp, ls,wc version 8.9
GNU Wget wget version 1.13
IBM Nweb nweb August 8, 2012
GNU Netcat nc, netcat version 0.7.1
Tor tor version 0.2.3
FFmpeg ffmpeg

Network Troubleshooter Written by myself
Name command(s) Source

Libraries
Lib Event libevent.so 1.4.14b-stable
OpenSSL libcrypt.so 1.0.1c
zlib zlib.so 1.2.7

Table A.1: Software which was compiled and run in Lind.

130

Bibliography

[1] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them, 1st ed. New York, NY, USA:

McGraw-Hill, Inc., 2010.

[2] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011 CWE/SANS

top 25 most dangerous software errors,” Common Weakness Enumeration, 7515

Colshire Drive, McLean, VA, Tech. Rep. 1.0.3, September 2011.

[3] J. Viega and G. Mcgraw, Building Secure Software: How to Avoid Security Prob-

lems the Right Way (Addison-Wesley Professional Computing Series). Addison-

Wesley Professional, Oct. 2001. [Online]. Available: http://www.amazon.com/

exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/020172152X

[4] G. Tassey, “The economic impacts of inadequate infrastructure for software

testing,” National Institute of Standards and Technology, Tech. Rep., 2002.

[5] J. Hunker, Creeping Failure - How We Broke the Internet and What We Can

Do to Fix It. Mcclelland and Stewart, 2010.

[6] J. H. Saltzer and M. D. Schroeder, “The protection of information in

computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308,

Jun. 2005. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=1451869

131

[7] J. H. Saltzer, “Protection and the control of information sharing in Multics,”

Commun. ACM, vol. 17, no. 7, pp. 388–402, Jul. 1974. [Online]. Available:

http://doi.acm.org/10.1145/361011.361067

[8] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,

G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance

isolation properties of virtualization systems,” in Proceedings of the 2007

workshop on Experimental computer science, ser. ExpCS ’07. New York, NY,

USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1281700.

1281706

[9] C. Matthews, Y. Coady, and S. Neville, “Quantifying artifacts of virtualization:

A framework for mirco-benchmarks,” in The proceedings of the 2009 IEEE In-

ternational Workshop on Quantitative Evaluation of large-scale Systems and

Technologies, 2009.

[10] “CentOS—Community ENTerprise Operating System is a free rebuild

of source packages freely available from a prominent north american

enterprise Linux vendor.” accessed January 29, 2013. [Online]. Available:

https://www.centos.org/

[11] “Lighttpd: fly light,” 2007, accessed March 1, 2007. [Online]. Available:

http://www.lighttpd.net/

[12] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka,

N. Narula, and N. Fullagar, “Native Client: A sandbox for portable, untrusted

x86 native code,” in Security and Privacy, 2009 30th IEEE Symposium on, may

2009, pp. 79 –93.

132

[13] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,

A. Krishnamurthy, and T. Anderson, “Retaining sandbox containment

despite bugs in privileged memory-safe code,” in Proceedings of the 17th

ACM conference on Computer and communications security, ser. CCS

’10. New York, NY, USA: ACM, 2010, pp. 212–223. [Online]. Available:

http://doi.acm.org/10.1145/1866307.1866332

[14] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,

“Rethinking the library OS from the top down,” in Proceedings of the sixteenth

international conference on Architectural support for programming languages

and operating systems, ser. ASPLOS ’11. New York, NY, USA: ACM, 2011,

pp. 291–304. [Online]. Available: http://doi.acm.org/10.1145/1950365.1950399

[15] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-

based fault isolation,” SIGOPS Oper. Syst. Rev., vol. 27, no. 5, pp. 203–216,

Dec. 1993. [Online]. Available: http://doi.acm.org/10.1145/173668.168635

[16] B. Chen, “Naclports: Ports of various open-source projects to Native

Client,” January 2013, accessed January 10, 2013. [Online]. Available:

https://code.google.com/p/naclports/

[17] J. Cappos, “Future Repy library reference - Seattle,” accessed Decem-

ber 9, 2012. [Online]. Available: https://seattle.cs.washington.edu/wiki/

FutureRepyAPI

[18] “Linux cross reference—linux/arch/ia64/kernel/entry.s,” accessed October 9,

2012. [Online]. Available: http://lxr.linux.no/linux+v3.6.1/arch/ia64/kernel/

entry.S#L1471

133

[19] S. A. Wallace, M. Muhammad, J. Mache, and J. Cappos, “Hands-on

internet with Seattle and computers from across the globe,” J. Comput.

Sci. Coll., vol. 27, no. 1, pp. 137–142, Oct. 2011. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2037151.2037181

[20] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle:

a platform for educational cloud computing,” in Proceedings of the 40th

ACM technical symposium on Computer science education, ser. SIGCSE

’09. New York, NY, USA: ACM, 2009, pp. 111–115. [Online]. Available:

http://doi.acm.org/10.1145/1508865.1508905

[21] J. Cappos and I. Beschastnikh, “Teaching networking and distributed

systems with Seattle: tutorial presentation,” J. Comput. Sci. Coll.,

vol. 25, no. 5, pp. 308–310, May 2010. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1747137.1747196

[22] J. Cappos and J. Jacky, “Model-based testing without a model: assessing

portability in the Seattle testbed,” in Proceedings of the 5th international

conference on Systems software verification, ser. SSV’10. Berkeley, CA,

USA: USENIX Association, 2010, pp. 4–4. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1929004.1929008

[23] L. Collares, C. Matthews, J. Cappos, Y. Coady, and R. McGeer, “Et (smart)

phone home!” in Proceedings of the compilation of the co-located workshops

on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11,

ser. SPLASH ’11 Workshops. New York, NY, USA: ACM, 2011, pp. 283–288.

[Online]. Available: http://doi.acm.org/10.1145/2095050.2095098

134

[24] C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from Google

Chrome,” Commun. ACM, vol. 52, no. 8, pp. 45–49, Aug. 2009. [Online].

Available: http://doi.acm.org/10.1145/1536616.1536634

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of

reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1995.

[26] D. A. Wheeler, “generated using ’SLOCCount’,” accessed October 15, 2012.

[Online]. Available: http://www.dwheeler.com/sloccount/

[27] “Filesystem in Userspace,” accessed January 26, 2013. [Online]. Available:

http://fuse.sourceforge.net/

[28] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch, “Leveraging legacy

code to deploy desktop applications on the web,” in Proceedings of the 8th

USENIX conference on Operating systems design and implementation, ser.

OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 339–354.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855765

[29] “Oracle VM VirtualBox,” accessed January 26, 2013. [Online]. Available:

https://www.virtualbox.org/

[30] “Ubuntu 10.04.4 LTS (Lucid Lynx),” accessed January 26, 2013. [Online].

Available: http://releases.ubuntu.com/lucid/

[31] N. Mathewson and N. Provos, “libevent—an event notification library,”

accessed September 1, 2012. [Online]. Available: http://libevent.org/

[32] M. J. Cox, R. S. Engelschall, S. Henson, and B. Laurie, “OpenSSL: The

open source toolkit for SSL/TLS,” September 2012. [Online]. Available:

http://www.openssl.org/

135

[33] G. Roelofs and M. Adler, “A massively spiffy yet delicately unobtrusive

compression library (also free, not to mention unencumbered by patents),”

September 2012. [Online]. Available: http://www.zlib.net/

[34] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and

S. Winwood, “seL4: formal verification of an os kernel,” in Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles, ser. SOSP

’09. New York, NY, USA: ACM, 2009, pp. 207–220. [Online]. Available:

http://doi.acm.org/10.1145/1629575.1629596

[35] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,

and B. Chen, “Adapting software fault isolation to contemporary cpu

architectures,” in Proceedings of the 19th USENIX conference on Security, ser.

USENIX Security’10. Berkeley, CA, USA: USENIX Association, 2010, pp.

1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=1929820.1929822

[36] “grep – GNU project – Free Software Foundation (FSF),” accessed December

9, 2012. [Online]. Available: http://www.gnu.org/software/grep/

[37] “GNU Wget,” accessed December 9, 2012. [Online]. Available: http:

//www.gnu.org/software/wget/

[38] N. Griffiths, “nweb: a tiny, safe web server (static pages only),”

January 2012, accessed January 30, 2013. [Online]. Available: http:

//www.ibm.com/developerworks/systems/library/es-nweb/index.html

[39] “Tor project: Anonymity online,” January 2012, accessed January 30, 2013.

[Online]. Available: https://www.torproject.org/

136

[40] G. Giacobbi, “The GNU Netcat project,” September 2012. [Online]. Available:

http://netcat.sourceforge.net/

[41] M. Hart, “Free ebooks by Project Gutenberg,” November 2012, accessed

December 9, 2012. [Online]. Available: http://www.gutenberg.org/

[42] E. W. Dijkstra, “The structure of the THE-multiprogramming system,” in

Proceedings of the first ACM symposium on Operating System Principles,

ser. SOSP ’67. New York, NY, USA: ACM, 1967, pp. 10.1–10.6. [Online].

Available: http://doi.acm.org/10.1145/800001.811672

[43] A. Bensoussan, C. T. Clingen, and R. C. Daley, “The Multics virtual memory:

concepts and design,” Commun. ACM, vol. 15, no. 5, pp. 308–318, May 1972.

[Online]. Available: http://doi.acm.org/10.1145/355602.361306

[44] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third

generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul.

1974. [Online]. Available: http://doi.acm.org/10.1145/361011.361073

[45] Intel 64 and IA-32 Architectures Software Developer’s Manual: System Pro-

gramming Guide, August 2012.

[46] “VMWare Workstation,” accessed January 5, 2013. [Online]. Available:

http://www.vmware.com/

[47] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in SOSP03.

New York, NY, USA: ACM, 2003, pp. 164–177.

[48] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:

the Linux Virtual Machine Monitor,” in OLS ’07: Proceedings of the

137

Linux Symposium, vol. 1, Jun. 2007, pp. 225–230. [Online]. Available:

http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

[49] “LXC homepage,” accessed December 10, 2012. [Online]. Available:

http://lxc.sourceforge.net

[50] J. Gélinas and H. Pötzl, “Linux VServers project,” accessed December 9, 2012.

[Online]. Available: http://linux-vserver.org/

[51] J. Williams and D. Wichers, “Open web application security project top 10

2010,” Open Web Application Security Project, Tech. Rep., 2010.

[52] “Java virtual machine—Wikipedia,” January 2013. [Online]. Available:

https://en.wikipedia.org/wiki/Java virtual machine

[53] K. Randolph, “Inside adobe reader protected mode – part

1 - design,” Adobe Secure Software Engineering Team (AS-

SET) Blog. [Online]. Available: http://blogs.adobe.com/asset/2010/10/

inside-adobe-reader-protected-mode-part-1-design.html

[54] ——, “Inside adobe reader protected mode – part 3 – broker process, policies,

and interprocess communication,” Adobe Secure Software Engineering Team

(ASSET) Blog. [Online]. Available: http://blogs.adobe.com/asset/2010/11/

[55] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz, “Java

security: Web browsers and beyond,” in Internet besieged, D. E.

Denning and P. J. Denning, Eds. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 1998, pp. 241–269. [Online]. Available:

http://dl.acm.org/citation.cfm?id=275737.275753

138

[56] L. Gong, “Java security architecture revisited,” Commun. ACM, vol. 54,

no. 11, pp. 48–52, Nov. 2011. [Online]. Available: http://doi.acm.org/10.1145/

2018396.2018411

[57] J. Cappos, “All of the Python you need to forget to use Repy,” January 2013.

[Online]. Available: https://seattle.cs.washington.edu/wiki/PythonVsRepy

[58] “Apple sandbox,” accessed April 28th, 2012. [Online]. Available: http:

//phys.org/news/2011-11-apple-sandbox-angers.html

[59] D. LeBlanc, “Practical Windows sandboxing,” accessed December 14, 2012.

[Online]. Available: http://blogs.msdn.com/b/david leblanc/archive/2007/07/

27/practical-windows-sandboxing-part-1.aspx

[60] R. E. Smith, “Mandatory protection for internet server software,” in

Proceedings of the 12th Annual Computer Security Applications Conference,

ser. ACSAC ’96. Washington, DC, USA: IEEE Computer Society, 1996, pp.

178–. [Online]. Available: http://dl.acm.org/citation.cfm?id=784588.784626

[61] System Administration Guide: Oracle Solaris Containers-Resource Manage-

ment and Oracle Solaris Zones.

[62] P. Kamp and R. N. M. Watson, “Jails: Confining the omnipotent root,” in In

Proc. 2nd Intl. SANE Conference, 2000.

[63] Swsoft, “OpenVZ Homepage,” http://openvz.org/.

[64] “Parallels virtuozzo containers,” accessed January 10, 2013. [Online]. Available:

http://www.parallels.com/products/pvc/

[65] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-

based operating system virtualization: a scalable, high-performance alternative

139

to hypervisors,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 275–287, Mar.

2007. [Online]. Available: http://dx.doi.org/10.1145/1272998.1273025

[66] M. E. Fiuczynski, R. Grimm, Y. Coady, and D. Walker, “patch

(1) considered harmful,” in Proceedings of the 10th conference on Hot

Topics in Operating Systems - Volume 10, ser. HOTOS’05. Berkeley,

CA, USA: USENIX Association, 2005, pp. 16–16. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1251123.1251139

[67] M. Helsley, “LXC Linux container tools: Tour and set up the new

container tools called Linux Containers,” February 2009, accessed January 10,

2013. [Online]. Available: http://www.ibm.com/developerworks/linux/library/

l-lxc-containers/

[68] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,

“On the effectiveness of address-space randomization,” in Proceedings of the

11th ACM conference on Computer and communications security, ser. CCS

’04. New York, NY, USA: ACM, 2004, pp. 298–307. [Online]. Available:

http://doi.acm.org/10.1145/1030083.1030124

[69] “AppArmour,” accessed April 28th, 2012. [Online]. Available: http:

//www.nds8.co.uk/apparmour.asp

[70] P. A. Loscocco and S. D. Smalley, “Meeting critical security objectives

with Security-Enhanced Linux,” in Proceedings of the 2001 Ottawa Linux

Symposium, 2001. [Online]. Available: http://lwn.net/2001/features/OLS/

pdf/pdf/selinux.pdf

140

[71] Mendel, “Ostia: A delegating architecture for secure system call interposition,”

in Proceedings of the 11th Annual Symposium on Network and Distributed Sys-

tem Security (NDSS 2004), Feb. 2004.

[72] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, “A secure environment

for untrusted helper applications (confining the wily hacker),” in Proceedings of

the Sixth USENIX UNIX Security Symposium, 1996.

[73] D. A. Wagner, “Janus: An approach for confinement of untrusted applications,”

University of California, Berkeley, Tech. Rep. CSD-99-1056, 1999.

[74] T. Garfinkel, “Traps and pitfalls: practical problems in system call interposition

based security tools,” in In Proc. Network and Distributed Systems Security

Symposium, 2003, pp. 163–176.

[75] P. Green, “Multics virtual memory — tutorial and reflections,” accessed

January 1, 2013. [Online]. Available: ftp://ftp.stratus.com/vos/multics/pg/

mvm.html

[76] T.-c. Chiueh, G. Venkitachalam, and P. Pradhan, “Integrating segmentation

and paging protection for safe, efficient and transparent software extensions,”

in Proceedings of the seventeenth ACM symposium on Operating systems

principles, ser. SOSP ’99. New York, NY, USA: ACM, 1999, pp. 140–153.

[Online]. Available: http://doi.acm.org/10.1145/319151.319161

[77] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: memory isolation

for Linux using Mondriaan Memory Protection,” in Proceedings of the

twentieth ACM symposium on Operating systems principles, ser. SOSP

’05. New York, NY, USA: ACM, 2005, pp. 31–44. [Online]. Available:

http://doi.acm.org/10.1145/1095810.1095814

141

[78] “Piet Mondrian—Wikipedia,” accessed January 1, 2013. [Online]. Available:

http://en.wikipedia.org/wiki/Piet Mondrian

[79] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the

reliability of commodity operating systems,” in Proceedings of the nineteenth

ACM symposium on Operating systems principles, ser. SOSP ’03. New

York, NY, USA: ACM, 2003, pp. 207–222. [Online]. Available: http:

//doi.acm.org/10.1145/945445.945466

[80] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,”

in Proceedings of the 10th international conference on Architectural

support for programming languages and operating systems, ser. ASPLOS-X.

New York, NY, USA: ACM, 2002, pp. 304–316. [Online]. Available:

http://doi.acm.org/10.1145/605397.605429

[81] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: an operating

system architecture for application-level resource management,” in Proceedings

of the fifteenth ACM symposium on Operating systems principles, ser. SOSP

’95. New York, NY, USA: ACM, 1995, pp. 251–266. [Online]. Available:

http://doi.acm.org/10.1145/224056.224076

[82] D. R. Engler and M. F. Kaashoek, “Exterminate all operating system

abstractions,” in Proceedings of the Fifth Workshop on Hot Topics

in Operating Systems (HotOS-V), ser. HOTOS ’95. Washington, DC,

USA: IEEE Computer Society, 1995, pp. 78–. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=822074.822387

[83] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño, R. Hunt,

D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie,

142

“Application performance and flexibility on exokernel systems,” in Proceedings

of the sixteenth ACM symposium on Operating systems principles, ser. SOSP

’97. New York, NY, USA: ACM, 1997, pp. 52–65. [Online]. Available:

http://doi.acm.org/10.1145/268998.266644

[84] J. Howatt, “Operating systems projects: Minix revisited,” SIGCSE

Bull., vol. 34, no. 4, pp. 109–111, Dec. 2002. [Online]. Available:

http://doi.acm.org/10.1145/820127.820179

[85] J. Liedtke, “Toward real microkernels,” Commun. ACM, vol. 39, no. 9, pp. 70–

77, Sep. 1996. [Online]. Available: http://doi.acm.org/10.1145/234215.234473

[86] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make operating systems

reliable and secure?” Computer, vol. 39, no. 5, pp. 44–51, May 2006. [Online].

Available: http://dx.doi.org/10.1109/MC.2006.156

[87] N. Hardy, “KeyKOS architecture,” SIGOPS Oper. Syst. Rev., vol. 19, no. 4,

pp. 8–25, Oct. 1985. [Online]. Available: http://doi.acm.org/10.1145/858336.

858337

[88] C. R. Landau, “Security in a secure capability-based system,” SIGOPS

Oper. Syst. Rev., vol. 23, no. 4, pp. 2–4, Oct. 1989. [Online]. Available:

http://doi.acm.org/10.1145/70730.70731

[89] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability

system,” in Proceedings of the seventeenth ACM symposium on Operating

systems principles, ser. SOSP ’99. New York, NY, USA: ACM, 1999, pp.

170–185. [Online]. Available: http://doi.acm.org/10.1145/319151.319163

[90] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters, “Towards

trustworthy computing systems: taking microkernels to the next level,”

143

SIGOPS Oper. Syst. Rev., vol. 41, no. 4, pp. 3–11, Jul. 2007. [Online].

Available: http://doi.acm.org/10.1145/1278901.1278904

[91] G. Hamilton and P. Kougiouris, “The Spring Nucleus: a microkernel for

objects,” in Proceedings of the USENIX Summer 1993 Technical Conference

on Summer technical conference - Volume 1, ser. Usenix-stc’93. Berkeley,

CA, USA: USENIX Association, 1993, pp. 11:1–11:15. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1361453.1361464

[92] P. B. Hansen, “The nucleus of a multiprogramming system,” Commun.

ACM, vol. 13, no. 4, pp. 238–241, Apr. 1970. [Online]. Available:

http://doi.acm.org/10.1145/362258.362278

[93] J. Liedtke, “On micro-kernel construction,” in Proceedings of the fifteenth

ACM symposium on Operating systems principles, ser. SOSP ’95. New

York, NY, USA: ACM, 1995, pp. 237–250. [Online]. Available: http:

//doi.acm.org/10.1145/224056.224075

[94] Fourth International Conference on Configurable Distributed Systems, 1998,

Proceedings, Annapolis, MA, USA, 6 May, 1998. IEEE, 1998.

[95] A. Banerji, J. M. Tracey, and D. L. Cohn, “Protected shared libraries:

a new approach to modularity and sharing,” in Proceedings of the annual

conference on USENIX Annual Technical Conference, ser. ATEC ’97.

Berkeley, CA, USA: USENIX Association, 1997, pp. 5–5. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1268680.1268685

[96] G. Heiser, V. Uhlig, and J. LeVasseur, “Are virtual-machine monitors

microkernels done right?” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 95–99,

Jan. 2006. [Online]. Available: http://doi.acm.org/10.1145/1113361.1113363

144

[97] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds,” in

Proceedings of the 16th ACM conference on Computer and communications

security, ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 199–212.

[Online]. Available: http://doi.acm.org/10.1145/1653662.1653687

[98] D. G. Murray, G. Milos, and S. Hand, “Improving Xen security through

disaggregation,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, ser. VEE ’08.

New York, NY, USA: ACM, 2008, pp. 151–160. [Online]. Available:

http://doi.acm.org/10.1145/1346256.1346278

[99] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,

P. Loscocco, and A. Warfield, “Breaking up is hard to do: security

and functionality in a commodity hypervisor,” in Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles, ser. SOSP

’11. New York, NY, USA: ACM, 2011, pp. 189–202. [Online]. Available:

http://doi.acm.org/10.1145/2043556.2043575

[100] A. Whitaker, M. Shaw, and S. D. Gribble, “Scale and performance in the

Denali isolation kernel,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 195–209,

Dec. 2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844147

[101] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: splitting

applications into reduced-privilege compartments,” in Proceedings of the 5th

USENIX Symposium on Networked Systems Design and Implementation, ser.

NSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 309–322.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1387589.1387611

145

[102] K. J. Hoffman, H. Metzger, and P. Eugster, “Ribbons: a partially shared

memory programming model,” in Proceedings of the 2011 ACM international

conference on Object oriented programming systems languages and applications,

ser. OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 289–306. [Online].

Available: http://doi.acm.org/10.1145/2048066.2048091

[103] G. Czajkowski and L. Daynés, “Multitasking without comprimise: a virtual

machine evolution,” in Proceedings of the 16th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, ser.

OOPSLA ’01. New York, NY, USA: ACM, 2001, pp. 125–138. [Online].

Available: http://doi.acm.org/10.1145/504282.504292

[104] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,

C. Chambers, and S. Eggers, “Extensibility safety and performance in the

SPIN operating system,” in Proceedings of the fifteenth ACM symposium on

Operating systems principles, ser. SOSP ’95. New York, NY, USA: ACM, 1995,

pp. 267–283. [Online]. Available: http://doi.acm.org/10.1145/224056.224077

[105] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software stack,”

SIGOPS Oper. Syst. Rev., vol. 41, no. 2, pp. 37–49, Apr. 2007. [Online].

Available: http://doi.acm.org/10.1145/1243418.1243424

[106] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escalation,” in

Proceedings of the 12th conference on USENIX Security Symposium - Volume

12, ser. SSYM’03. Berkeley, CA, USA: USENIX Association, 2003, pp. 16–16.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1251353.1251369

[107] N. Provos, “Privilege separated OpenSSH,” accessed January 1, 2013. [Online].

Available: http://www.citi.umich.edu/u/provos/ssh/privsep.html

146

[108] P. Deutsch and C. A. Grant, “A flexible measurement tool for software systems,”

in Information Processing 71, Ljubljana, Yugoslavia, 1971, pp. 320–326.

[109] G. C. Necula, “Proof-carrying code,” in Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, ser.

POPL ’97. New York, NY, USA: ACM, 1997, pp. 106–119. [Online].

Available: http://doi.acm.org/10.1145/263699.263712

[110] C.-X. Lin, Y.-Y. Chen, L. Li, and B. Hua, “Garbage collector verification for

proof-carrying code,” J. Comput. Sci. Technol., vol. 22, no. 3, pp. 426–437,

May 2007. [Online]. Available: http://dx.doi.org/10.1007/s11390-007-9049-z

[111] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC architecture,” in

Proceedings of the 15th conference on USENIX Security Symposium - Volume

15, ser. USENIX-SS’06. Berkeley, CA, USA: USENIX Association, 2006.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1267336.1267351

[112] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor, B. Chen, D. L. Schuff,

D. Sehr, C. L. Biffle, and B. Yee, “Language-independent sandboxing of

just-in-time compilation and self-modifying code,” in Proceedings of the

32nd ACM SIGPLAN conference on Programming language design and

implementation, ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp.

355–366. [Online]. Available: http://doi.acm.org/10.1145/1993498.1993540

[113] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan, “RockSalt:

better, faster, stronger SFI for the x86,” in Proceedings of the 33rd ACM

SIGPLAN conference on Programming Language Design and Implementation,

ser. PLDI ’12. New York, NY, USA: ACM, 2012, pp. 395–404. [Online].

Available: http://doi.acm.org/10.1145/2254064.2254111

147

[114] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,

P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”

in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 45–58.

[Online]. Available: http://doi.acm.org/10.1145/1629575.1629581

[115] C. Small and M. I. Seltzer, “MiSFIT: Constructing safe extensible systems,”

IEEE Concurrency, vol. 6, no. 3, pp. 34–41, Jul. 1998. [Online]. Available:

http://dx.doi.org/10.1109/4434.708254

[116] D. Engler, M. F. Kaashoek, and J. O’Toole, “The operating system kernel as

a secure programmable machine,” in Proceedings of the 6th workshop on ACM

SIGOPS European workshop: Matching operating systems to application needs,

ser. EW 6. New York, NY, USA: ACM, 1994, pp. 62–67. [Online]. Available:

http://doi.acm.org/10.1145/504390.504407

[117] C. Small and M. Seltzer, “VINO: An integrated platform for operating system

and database research,” 1994.

[118] A. Chernoff and R. Hookway, “DIGITAL FX!32 running 32-bit x86

applications on Alpha NT,” in Proceedings of the USENIX Windows NT

Workshop on The USENIX Windows NT Workshop 1997, ser. NT’97.

Berkeley, CA, USA: USENIX Association, 1997, pp. 2–2. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1267658.1267660

[119] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss, “Cramm: virtual

memory support for garbage-collected applications,” in Proceedings of the

7th symposium on Operating systems design and implementation, ser. OSDI

’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 103–116. [Online].

Available: http://dl.acm.org/citation.cfm?id=1298455.1298466

148

[120] “The AppArmor security project,” January 2013. [Online]. Available:

http://wiki.apparmor.net/

[121] W. B. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed.

Prentice Hall Professional Technical Reference, 1988.

