
SCOPE: Scalable Clustered Objects with Portable Events

by

Christopher James Matthews
B.Sc, University of Victoria, 2004

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Christopher James Matthews, 2006
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part by photocopy
or other means, without the permission of the author.

Supervisor: Dr. Y. Coady

ABSTRACT

Writing truly concurrent software is hard, scaling software to fully utilize hardware is

one of the reasons why. One abstraction for increasing the scalability of systems software

is clustered objects. Clustered objects is a proven method of increasing scalability.

This thesis explores a user-level abstraction based on clustered objects which increases

hardware utilization without requiring any customization of the underlying system. We

detail the design, implementation and testing of Scalable Clustered Objects with Portable

Events or (SCOPE), a user-level system inspired by a kernel-level implementation of the

clustered objects model from IBM Research’s K42 operating system. To aid in the trans-

latability of the new system, we introduce the idea of a clustered object event, which is

responsible for maintaining the runtime environment of the clustered objects. We show

that SCOPE can increase locality on a simple micro benchmark, and provide most of the

benefits that the kernel-level implementation provided.

Table of Contents

Abstract ii

Table of Contents iii

List of Tables viii

List of Figures ix

1 Introduction and Related Work 1

1.1 History and Context . 2

1.1.1 Concurrency: Interrupts and Multiprogramming 3

1.2 Shared Memory Multiprocessors . 6

1.2.1 Caching . 7

1.2.2 Sharing . 9

1.2.3 False Sharing . 9

1.2.4 Locality and Sharing . 10

1.3 Modern Solutions for Utilizing Concurrency 13

1.3.1 Locking . 13

1.3.2 Lock-Free Data Structures . 14

1.3.3 Read, Copy, Update . 15

1.3.4 Software Transactional Memory 16

1.4 Clustered Objects: a Proven Solution to Scalable OSes 16

1.4.1 The Need for Speed: Everyone Has It 18

1.4.2 SCOPE . 20

Table of Contents iv

1.5 Summary . 20

2 Background: The Clustered Object Model 22

2.1 Object Models . 22

2.1.1 Partitioned Objects . 22

2.1.2 Clustered Objects as a model of Partitioned Objects 24

2.1.3 The Clustered Object Model: Roots and Representatives 25

2.2 Clustered Object Implementation . 26

2.2.1 The Clustered Object Manager 27

2.2.2 Translation Tables . 27

2.2.3 A Clustered Object’s ID . 28

2.2.4 Accessing a Clustered Object . 28

2.2.5 Garbage Collection . 31

2.2.6 K42 Clustered Objects: Implementation Details 32

2.3 The benefits of clustered objects . 32

2.3.1 Programming Benefits . 35

2.3.2 Utilization . 36

2.4 Summary . 36

3 Challenges in Building a New Clustered Object Library: Dependencies and

Constraints 38

3.1 Leaving the Kernel . 39

3.1.1 What are the options? . 39

3.2 Dependencies . 40

3.2.1 Concurrency . 41

3.2.2 The Object Translation Facility 41

3.2.3 Kernel Memory Allocation . 41

3.2.4 Protected Procedure Call . 42

3.2.5 Error Handling . 42

Table of Contents v

3.3 Summary . 43

4 SCOPE: Prototype Design and Implementation 44

4.1 Concurrency . 45

4.2 Object Translation Facility . 46

4.2.1 DREF: the Dereferencing Macro 46

4.2.2 Portability with Events: START EVENT and END EVENT 47

4.2.3 Access Patterns and Portability 48

4.3 Kernel Memory Allocation Facility . 49

4.4 Protected Procedure Call Facility . 50

4.5 Error Handling . 50

4.6 Implementation Process . 51

4.7 Summary . 53

5 Testing and Validation 55

5.1 Evaluating Assumptions . 55

5.1.1 Quantifying Sharing . 56

5.1.2 The Integer Counter Example . 56

5.1.3 Experiment 1: Creating Contended Counters 57

5.1.4 Hardware Setup . 58

5.1.5 Software Setup . 58

5.1.6 Procedure . 58

5.1.7 Quantifying Results . 61

5.1.8 Results . 61

5.1.9 Lessons Learned: Unanticipated Sharing 62

5.2 Performance of SCOPE . 64

5.2.1 Experiment 2: Counting Clustered Objects 65

5.2.2 Setup . 65

5.2.3 Procedure . 65

Table of Contents vi

5.2.4 Results . 67

5.2.5 Analysis . 67

5.3 Reproduction of Benefits . 70

5.3.1 Programming Benefits . 73

5.3.2 Utilization . 74

5.4 Summary . 75

6 Future Work and Conclusions 76

6.1 Future Work . 76

6.1.1 Reproduction of Advanced Features 76

6.1.1.1 KORE . 77

6.1.1.2 Garbage Collection . 77

6.1.1.3 RCU . 78

6.1.1.4 Dynamic Update . 78

6.1.1.5 Portability . 78

6.1.2 SCOPE Improvements . 79

6.1.3 Improving the Client experience with AOP 79

6.2 Conclusions . 80

Bibliography 83

Appendix A Test Machines 86

A.1 Dual Processor X86 . 86

Appendix B Integer Counters 89

B.1 The Integer Counter Interface . 89

B.2 Atomically Accessing an Int . 89

B.3 The Simple Integer Counter . 90

B.4 Array Based Integer Counter . 91

B.5 Padded Array Based Integer Counter . 92

Table of Contents vii

Appendix C Single User Mode 94

List of Tables

1.1 Three common SMP machines used in the year 2006 6

2.1 Summary of the benefits of using clustered objects 37

4.1 Dependencies . 44

5.1 Simple sharing test results . 61

5.2 The results from the 6 test cases mentioned in Section 5.2.3 67

5.3 Summary of the Benefits provided by SCOPE 75

A.1 CPU information for the test machine . 87

A.2 Mainboard and chipset of the test machine 88

A.3 Memory of the test machine . 88

List of Figures

1.1 Cache and memory layout on a typical machine 8

1.2 Throughput of a standard benchmark on two different OSes 11

2.1 Data layout and requests in two systems 23

2.2 Regular objects vs. partitioned objects . 24

2.3 Several processors accessing a clustered object 26

2.4 The clustered object base classes . 29

2.5 Miss handling via the translation tables . 30

2.6 The K42 base classes that are used to create a clustered object 33

2.7 An example of a replicated clustered object. 34

4.1 An example of how a clustered object is called. 48

4.2 SCOPE’s three stage implementation . 52

4.3 A class diagram of the COSMgr . 54

5.1 Two configurations of the SimpleIntegerCounter 59

5.2 An ArrayIntegerCounter and PaddedArrayIntegerCounter accessing data . . 60

5.3 Average runtime results of the four integer counters cases 62

5.4 The natural layout of the integer counters across cache lines 64

5.5 Average runtime results of the six IntegerCounter cases 68

5.6 Average baseline runtime results of the six IntegerCounter cases 69

5.7 The PaddedArrayIntegerCounter implementation 71

5.8 The ReplicatedIntegerCounter implementation 72

C.1 Running a simple test in single user mode, and regular mode 95

Chapter 1

Introduction and Related Work

In a technological sense, concurrency can be loosely defined as simultaneous execution

within a computer system. In terms of hardware this normally means more than one stream

of instruction execution taking place at the same time. Concurrency presents many chal-

lenges both in terms of creating concurrency, and utilizing concurrent systems. This thesis

focuses on one area of the latter; specifically, efficiently utilizing Shared Memory Multi-

processor systems. The thesis of this work is that: to ease development in the face of the

system level complexities introduced by true concurrency, a user-level abstraction can be

used to increase utilization without customization of the underlying operating system.

The topic of concurrency has a long history in operating systems (OSes). In order to

understand the impact multiprocessors have had on operating system (OS) design and how

OSes have started to utilize concurrency, it is worthwhile to begin with a brief review of

early OS development. Thus, this chapter begins with Section 1.1, a brief review of con-

currency in the history of OSes. In Section 1.2, we describe Symmetric Multiprocessors,

a popular model of concurrent computing and some of this model’s fundamental implica-

tions on system design. In Section 1.3, we overview some modern concurrency utilization

techniques, such as lock free data structures, Read Copy Update, and Software Transac-

tion Memory. Finally, in Section 1.4 we introduce an approach we believe to be key to

achieving good utilization in the face of concurrent systems, namely clustered objects.

1.1 History and Context 2

1.1 History and Context

In the 1940s up to the mid 1950s, users interacted directly with the computer hardware

without an OS. The machine resources were arbitrated by exclusive reservations by the

users. Very soon after, users began easing direct hardware use by developing libraries of

common routines and programs such as mathematical libraries, input and output libraries,

compilers and linkers [31]. The intent of these libraries was to reuse the functionality

instead of rewriting it each time in the context of each application. Early computer systems

were very expensive1, so to further improve utilization of the systems in the mid 50s the

first OSes were developed by the customers of IBM (the predominant hardware vendor of

the time).

By the early 60s, many computer vendors were developing and shipping their own OSes

with their hardware platforms. Those operating systems improved utilization by batching

the users’ work together [29]. Those early batch operating systems consisted of a monitor

program which was loaded and kept in the machine’s memory along with other running

programs. The monitor accepted a batch of user work; then successively loaded each

user’s program and any common libraries required. Although serial in nature, monitors

improved utilization by avoiding idleness between execution of user programs and they

also simplified programming by providing a standard way for all users to utilize common

libraries [29]. Despite their simplicity relative to modern OSes, early monitor based oper-

ating systems had a number of impacts on our current model of computation in terms of

both software and hardware:

Separation: The notion of a monitor logically separated the software environment into two

layers, a low level systems environment built to run directly on top of the hardware,

and an environment for the user’s applications and libraries built to run on top of the

systems software. This second layer is now often referred to as user-level.

Privilege: To ensure the stability of the system, independent of the user-level application,

1Machines like the ENIAC cost in excess of $500,000 to create.

1.1 History and Context 3

the monitor had to maintain control of the hardware. This motivated the concept of

privilege, where no matter what the user-level program did, the monitor had a higher

level of privilege so it could still function properly.

Overhead: Along with the benefits of the OS come the associated overheads. Specifically,

application performance becomes dependent on OS performance.

The following subsection describes the dawn of concurrency in those early systems and

underscores its challenges in modern architectures.

1.1.1 Concurrency: Interrupts and Multiprogramming

The system monitor introduced basic user program batching. Soon after, more complex

concurrency was introduced to OSes. At first, systems introduced concurrency to further

increase utilization by overlapping input and output (IO) with processing. This concurrency

support was in the form of a hardware based asynchronous event notification mechanism

called interrupts. Interrupts were exploited to reduce the need for explicitly programmed

IO, in which the CPU was required for the entire duration of every IO operation [29].

Using interrupts, these OSes freed the CPU to do additional processing while IO operations

were in progress. Interrupts solved the problem of privilege by allowing the monitor to

occasionally regain control of the system after an interrupt. Interrupts were able to be

further leveraged to provide batch multiprogramming, in which more than one user-level

program could be run logically in parallel.

Batch multiprogramming further increased utilization by enabling slow IO operations to

proceed in parallel with processor execution. In this model, multiple user applications were

loaded in memory; when a given application requested IO, its execution was suspended

until that IO operation was complete and the monitor switched execution to another appli-

cation. When IO operations completed, they signaled the monitor via an interrupt which

allowed the monitor to resume execution of the application which initiated the IO. Doing

1.1 History and Context 4

so increased the throughput of batch processing by overlapping application execution with

other application’s IO.

Later, this technique was extended with timers to support the interactive processing

of multiple users. Rather than waiting to switch between applications on IO events, ap-

plications were paused (preempted) with timers. This allowed the monitor to switch the

processor between multiple applications at a time quantum which gave multiple users the

perception of exclusive interactive use of the system.

Multiprogramming was a significant advance in OSes and represented a significant el-

evation of the issue of concurrency to a fundamental aspect of modern OS design and

implementation. Despite not actually executing multiple instructions in parallel (true con-

currency), multiprogramming and support for interrupts in general required many complex

issues to be tackled, including:

• Synchronization of interrelated events.

• Integrity and consistency (safety) of data structures, and access to global resources

such as IO devices.

• Protection and isolation of independent user-level applications, and access control

and ownership of those applications.

• Scheduling which application should be executed next, and distributing limited re-

sources across applications.

However, perhaps the most fundamental impact was the discovery of how complex it

is to correctly implement OSes in the presence of asynchronous events and multiple exe-

cuting applications. In such an environment it is no longer straightforward to reason about

the correctness of the software as it takes on a seemingly nondeterministic nature. Ad hoc

methodologies had to be abandoned for more disciplined approaches to decomposing and

writing systems software. The early recognition of these facts is well illustrated in the com-

ments and approaches taken by Dijkstra in the development of “THE” Multiprogramming

System [12]:

1.1 History and Context 5

... at least in my country the intellectual level needed for system design is
in general grossly underestimated. I am convinced more than ever that this type
of work is very difficult, and that every effort to do it with other than the best
people is doomed to either failure or moderate success at enormous expense.

In 1965, Dijkstra introduced the notion of a critical section, a set of operations which re-

quire synchronization for correctness [11]. He also introduced constructs he called semaphores,

which are counters that can be used to guard the execution of a critical section from an-

other processor [11, 12]. This was the first solution to the problem of achieving mutually

exclusive execution of a critical section within a concurrent system.

One of the primary mechanisms used to deal with the challenges of synchronization

and safety in multiprogrammed systems is hardware support for disabling interrupts. In

multiprogrammed systems the disabling of interrupts can be used to make the execution

of a code path atomic. Therefore, disabling interrupts is a simple way to guard a critical

section. Once interrupts have been disabled, the execution of the code path is guaranteed

to proceed without preemption until interrupts are re-enabled. In these systems, interrupts

are the only events that can cause current execution to be preempted.

However, with the advent of modern multiprocessors, disabling interrupts on a single

processor was no longer sufficient to ensure safety. A multiprocessor has multiple CPUs

which can concurrently and independently execute instructions. Rather than simply inter-

leaving instructions in response to interrupts, multiple applications and system requests can

be executing in a truly concurrent fashion.

Hence, matters have been further complicated with the advent of true concurrency:

where systems have more than one CPU and can execute instructions completely in paral-

lel. The next section describes Shared Memory Multiprocessors (SMMPs), and Symmetric

Multiprocessors (SMPs), a common configuration for systems with more than one pro-

cessor and the platform of interest for this thesis. Sharing is described as an undesirable

phenomenon that naturally results from caching on these systems.

1.2 Shared Memory Multiprocessors 6

SMP machines
System Processor Cache Information
Intel Server 2 processors 16 kilobytes non-shared L1 cache, 1024 kilobytes

non-shared L2 cache
AMD workstation 2 processors 64 kilobytes non-shared L1 cache, 256 kilobytes

shared L2 cache
AMD workstation 1 dual-core 64 kilobytes non-shared L1 cache, 512 kilobytes non-

shared L2 cache

Table 1.1. Three common SMP machines used in the year 2006

1.2 Shared Memory Multiprocessors

One model of hardware concurrency that has recently become exceedingly popular is Sym-

metric MultiProcessors (SMP)2, a model in which more than one general purpose processor

executes instructions. SMP is a type of Shared Memory Multi Processor (SMMP), where

all of the processors are general purpose and can operate in one shared memory space. This

means that every processor can access the same memory as every other processor. SMP

machines offer a programming model which is a natural extension of a typical uniproces-

sor; a single shared address space. This has resulted in most general purpose multiproces-

sors today being SMPs. Table 1.1 shows some sample SMP machines that are commonly

available today.

Given the familiar programming model, it was natural to develop OSes for SMPs as an

incremental extension to uniprocessor OSes. Although this approach was the natural course

of development, research has shown that without some extra structure it is not necessarily

the best approach with respect to yielding high performance SMP OSes [2,4,6,9,15,22,25].

Until recently, SMP systems were more expensive than uniprocessors systems so they

were mostly reserved for server systems and scientific computing applications; however,

the cost of multiprocessor systems has steadily declined. Furthermore most of the major

chip manufacturers are using dual-core technology, which places more than one processor

2As opposed to Asymmetric Multiprocessors which have special purpose processors executing processor
specific tasks, for example the graphics processors (GPU) on a video card.

1.2 Shared Memory Multiprocessors 7

in a single chip [1]. Chip manufacturers have found that instead of increasing the speed

of chip, it is easier to provide more processors to increase throughput. As SMP systems

become more and more common, the corresponding demand for effective SMP programs

will increase. Unfortunately supplying support for highly effective concurrent programs is

hard.

As we will show in the following sections, SMP proves to be complex for system de-

signers to achieve good scalability. The definition of the term scalability used in this work

is: the desirable property of a system, a network or a process, which indicates its ability to

either handle growing amounts of work in a graceful manner, or to be readily enlarged [8].

In the context of demands for concurrency, we take this definition to mean maintaining

good hardware utilization and throughput as the load increases.

The rest of this section introduces caching, a hardware mechanism used to speed up

memory access on modern processors. Sections 1.2.2–1.2.4 describe sharing, a trouble-

some phenomenon associated with caching on SMP systems. Finally we describe state of

the art support for true concurrency in modern systems.

1.2.1 Caching

Generally, since its inception, processor technology has been faster than the memory it ac-

cesses [29]. In systems with large disparities in memory access speeds, caching is often

used to mitigate some of the performance effects. This is normally attributed to cost: the

faster the memory has to be, the more it costs – thus large memory systems use relatively

slow memory. This plays out throughout the entire memory hierarchy. The memory of most

relevance to this work is the cache memory that sits between the processor and main mem-

ory. Like their uniprocessor ancestors, modern SMP systems use caches to increase their

memory access performance. For example Figure 1.1 shows a simple two processor system

which takes the form of a level 1 (L1) cache (the fastest, but smallest) on each processor,

then (a slower, but larger) level 2 (L2) cache that is shared by all the processors. Each one

1.2 Shared Memory Multiprocessors 8

SMP Cache Organization
P1 P2

L1 L1

L2

Memory

Figure 1.1. One possible abstract representation of cache and memory layout for a SMP
machine. Processors P1 and P2 independently access the non-shared L1 caches, which are
synchronized with a shared L2 cache which is further synchronized with memory.

of these caches must have the correct data in them when accessed, so synchronization for

cache coherency must take place between L1, L2, and main memory.

When some data in memory is needed by one of the two processors, each cache is

checked in order L1, then L2. If the data is not in the caches, it is taken from the main

memory, and added to each cache of the requesting processor, evicting something older

back to the main memory. The next time that data is needed it will already be in the cache

(if it has not been evicted by some other memory request).

This description is a simplification of what the hardware actually does. In reality

caching is much more complex. To provide better performance, strategies like prefetching

and customized eviction policies can be applied. Strategies can vary between architectures,

and even between manufacturers. All this, combined with the complexities of synchro-

nization for coherency between caches and between cache and memory makes it extremely

hard to predict the behavior of a system with respect to cache behavior.

The atomic unit used to access data in caches is called the cache line. Typically 64 bytes

to 512 bytes long, a cache line is filled with contiguous data from the memory its cache is

1.2 Shared Memory Multiprocessors 9

fed from. Cache lines are the lowest level of granularity the cache is managed at. Therefore,

cache lines are the units by which evictions take place. When a particular memory address

is requested, a minimum of a full cache line with that address’ data in it is loaded into the

cache.

1.2.2 Sharing

When two or more processors access the same piece of data, we call that sharing. With

regard to caches, sharing can carry a subtle but highly significant penalty. When data

is shared, it has to be synchronized between all the other processors in the system. For

example, in a four processor system with processors A, B, C and D: if A writes to memory

address x, then a message must be sent to B, C and D telling them that their copy of the

cache line associated with address x is no longer valid; however, now the cache copies of

data associated with x in B, C and D are invalid, so when they go to access x, they each

have to (re)get data associated with x from main memory. Every time a write happens to

x, this process has to happen. Through Read-only data does not incur this penalty, sharing

introduces serious overheads to write operations, especially if they are frequent and on

different processors. Unfortunately, sharing is inherent in many common data structures,

and more generally in many common workloads. Thus sharing at the level of cache lines is

a significant obstacle to effective, high quality, truly concurrent software.

1.2.3 False Sharing

As mentioned above, the granularity of operations on a cache is of the size of a cache line.

This granularity leads to a second unfortunate phenomenon. When one piece of data is

shared all other data in the cache line are implicitly shared. This is known as false sharing.

Unfortunately, false sharing is costly because even when data is not being intentionally

shared, some neighboring data may cause the same sharing effects as real sharing would.

Unless intentionally and explicitly organized, the placement of data on cache lines is not

1.2 Shared Memory Multiprocessors 10

normally known a-priori, so the effects of false sharing could strike anywhere. The next

section describes locality, and its relationship with sharing.

1.2.4 Locality and Sharing

Achieving scalable performance requires minimizing all forms of sharing. Looking at this

in another way, minimizing sharing can be thought of as maximizing locality. On SMPs,

locality typically refers to the degree to which locks are contended and data (including the

locks themselves) are shared amongst different processors. The less contention on locks

and the less data are shared, the higher the locality associated with a processor’s access

patterns. Maximizing locality on SMPs is critical, because even small amounts of sharing

or false sharing can have a profound negative impact on performance and scalability [9,15].

Figure 1.2 shows an example of how sharing takes its toll on the standard benchmark

SDET [13]. The Linux version suffers from sharing, so as more processors are added, per

processor utilization eventually lessens and then the toll of sharing ultimately becomes so

great that throughput actually drops. The other line in Figure 1.2 is an implementation in

K42 that was designed to stop sharing by using per processor data, it performs much better

as the number of processors increase. As processors are added on those systems, throughput

still rises almost linearly. With these kinds of scalability characteristics, reducing sharing

is necessary for writing highly concurrent systems.

Previous work has shown that with considerable effort, one can reduce sharing in the

OS in the common case [4]. This allows for good scalability on a wide range of processors

and workloads, where performance is limited by the hardware and inherent scalability of

the workload.

The most obvious source of sharing within the control of the OS designer is the data

structures and algorithms employed by the OS. However, [15] observes that, prior to ad-

dressing specific data structures and algorithms of the OS in the small, a more fundamental

restructuring of the OS can reduce the impact of sharing by minimizing sharing in the

OS structure. That work uses an object-oriented model to create individual, independent

1.2 Shared Memory Multiprocessors 11

0

8750

17500

26250

35000

0 2 4 6 8 10 12 14 16 18 20 22 24

Linux K42

12.9.8

21.

Processors

Th
ro

ug
hp

ut

SDET

Figure 1.2. Throughput of a standard benchmark on two different OSes taken by the K42
team [5]. The effects of sharing limit scalability on Linux, K42 is not affected.

1.2 Shared Memory Multiprocessors 12

instances of operating system resources, instantiated as necessary to meet many of the

parallel demands of the workload. This allows accesses to independent resources to be di-

rectly reflected to independent software structures, thus avoiding unnecessary sharing due

to shared information about the data structures.

However, the above approach does not completely eliminate sharing, but rather helps

limit it to the paths and components which are shared due to the workload. For example,

consider the performance of a concurrent multi-user workload on K42 [6], a multiprocessor

OS constructed using this design. Assume a workload that simulates multiple users issuing

unique streams of standard UNIX commands with one stream issued per processor. Such a

workload, from a user’s perspective, has a high degree of independence and little intrinsic

sharing. Despite the fact that K42 is structured in an object oriented manner, with each

independent resource deliberately represented by an independent object instance, at four

processors, throughput is 3.3 times that of one processor and at 24 processors, throughput

is 12.5 times that of one processor [4] as depicted in Figure 1.2. Ideally, the throughput

should increase linearly with the number of processors.

Closer inspection reveals that the workload induces sharing on OS resources, thus lim-

iting scalability [4]. The K42 group contends that in order to ensure the remaining sharing

does not limit their OS’s performance, distribution, partitioning and replication must be

used to remove sharing in the common code paths [4]. Using distributed implementations

for key virtual memory objects, and running the same workload as above, the OS yields a

3.9 times throughput at four processors and a 21.1 times throughput at 24 processors [4].

Thus, it is possible with considerable effort, to reduce sharing and produce scalable

systems. Over time, mechanisms to help deal with concurrency effectively have evolved to

ensure both scalability and safety. The next section outlines some of these mechanisms.

1.3 Modern Solutions for Utilizing Concurrency 13

1.3 Modern Solutions for Utilizing Concurrency

Conceptually, the notion of a lock which guards a critical section is simple; however, there

are more complex ways to provide concurrency without relying on the mutual exclusion

of critical sections. However, these methods each have their own associated advantages

and disadvantages. The following subsections overview this theme of ways to increase

utilization. Section 1.3.1 starts with locking, and Section 1.3.2 describes the more complex

approach of lock-free data structures. Then we discuss more recent methods like Read

Copy Update in Section 1.3.3 and Software Transactional Memory in Section 1.3.4.

1.3.1 Locking

Most modern operating systems have settled on the semantics of a lock for synchroniza-

tion. The fundamental operations on a lock are acquire and release. Each critical section

is associated with a lock. At the start of the critical section an acquire is performed on

the associated lock, then after the critical section, a release of the same lock is performed.

Implementation of the lock must ensure serial execution of the critical section. When the

release operation is executed, another process is allowed to enter the critical section. As

lock implementations advanced, they took into account notions of forward progress, at-

tempting to provide guarantees about how the processes attempting to execute a critical

section would progress. For example, all processes will eventually execute the critical

section, or processes will execute the critical section in FIFO order. Later solutions also

attempted to account for the performance of the primitives, ensuring efficient execution on

typical hardware platforms. The exact semantics as to which process may enter is imple-

mentation dependent and has direct bearing on the forward progress properties associated

with the implementation.

In order to try and increase concurrency, variations on the lock semantics have been

introduced. These include, reader-writer locks where two independent types of acquisition

are introduced: read and write [21]. In order to improve concurrency, readers are allowed

1.3 Modern Solutions for Utilizing Concurrency 14

to operate concurrently on the data structure as long as they do not modify it; but, a writer

must execute mutually exclusively with respect to all other readers and writers.

The implementation of locks to achieve mutual exclusion on general purpose SMPs

typically synchronizes processors via shared variables. A great deal of effort was spent in

studying the performance of SMP locking techniques [24]. These efforts concluded that

standard locking exhibits poor locality, and that special locking techniques need to be used

that are SMP aware [21, 24].

The mutual exclusion provided by locks is a simple way to provide safety, but by block-

ing access to data you limit the scalability of a system fundamentally. With some effort

more elaborate methods can actually remove the need for locking altogether and possibly

provide a more scalable system. The following section highlights one of these approaches.

1.3.2 Lock-Free Data Structures

The scalability of a data structure can be limited if mutual exclusion is used. A lock-free

data structure is one that allows concurrent access without using mutual exclusion [7].

Before a general methodology for creating lock-free data structures was created, specific

data structures like queues, stacks, linked lists, union-find sets, and for algorithms like set

manipulation and list compression were found to have lock-free implementations [7]. This

work was unified by [18] who showed that there were universal primates that all of the

above used. Basic lock free algorithms work by copying a data structure, making changes

to that private copy, then updating the public pointer to the data structure to the address of

the private version [7]. If the pointer has already been changed, then the update must be

restarted. This method has many problems: that of having to make a copy of the entire data

structure each time it is updated. If there is more than one pointer to the data structure, they

all have to be tracked and updated, and there is no guarantee of forward progress.

In [7], they use the cooperative technique to organize threads; so, if one thread is writing

to a location, and another wishes to write to that same location, the second thread helps the

first thread finish, then executes its own write. This allows them to make the same forward

1.3 Modern Solutions for Utilizing Concurrency 15

progress guarantees that locks can. [7] also introduces what they call a caching method

which only copies parts of the data structure.

In regards to performance, lock-free data structures have excellent read performance

because there is no overhead associated with reading data. However, write performance is

much worse than normal, there is a significant extra amount of work that must take place to

organize the writes, and the overhead gets heavier as more writing happens; furthermore,

this method does not take into account sharing. The next section introduces Read Copy

Update, a lock free method that aims to perform better in write intensive situations.

1.3.3 Read, Copy, Update

Read Copy Update (RCU) was designed to remove some of the drawbacks of lock-free data

structures and other update methodologies. RCU does this by relaxing the requirement that

data be written as soon as the write is triggered [23]. Instead, RCU waits until a time when

the write can be done without interfering with anything that depends on that data.

RCU introduces the idea of a quiescent state, a point in the thread where it no longer

makes any assumptions about any guarded data structures [23]. They also introduce the

idea of a quiescent period, a period of time in the program in which every thread passes

through at least one quiescent state [23].

RCU tracks these quiescent states throughout the system. Then, RCU triggers writes

in a batch on each thread as it enters its quiescent state. As each thread passes through

a quiescent state, it no longer makes any assumptions about the old data, so by the end

of a quiescent period all assumptions made about the old data are gone and the system is

effectively working on the new data.

One interesting property of RCU is that because it batches its writes, the more writes

that happen the less the per write overhead [23]. Effectively, this means it may work bet-

ter than the lock-free data structures mentioned above under heavy write loads. In regards

to performance, RCU is comparable to modern locking mechanisms [23]. When imple-

menting RCU the designers also took into account sharing, so the RCU mechanisms do

1.4 Clustered Objects: a Proven Solution to Scalable OSes 16

not cause any sharing. RCU does not however help the client code reduce sharing. RCU

requires integration with the system it is running on to detect the quiescent states.

But, sometimes programs cannot tolerate stale data, or cannot drastically alter the sys-

tem they are running on, in these cases RCU is not applicable. Another update methodol-

ogy is Software Transactional Memory which tackles the problem from a slightly different

angle.

1.3.4 Software Transactional Memory

Software Transaction Memory (STM) provides transaction-like semantics for critical sec-

tions. Conceptually, everything in a critical section happens as a single atomic operation

that either succeeds (commits) or fails [28]. In the event of a failure, a retry can be issued.

STM is based on a design for Hardware Transactional Memory [28]. Initially the first

STM could only work statically, and had unusual hardware instruction requirements; how-

ever, more recent implementations have fixed those problems [16]. STM systems also have

a trade off between providing either fast single access or fast batch access [16].

In regards to implementation, STMs are similar to how lock-free data structures work.

STMs use a modified cooperative technique like lock-free data structures; however, instead

of working at the data structure level, STM defines a general list of memory cells, which

can be written to, or read from [28].

In regards to performance, STM has been shown to be competitive with locking [16].

But it does not address the issue of sharing. None of the solutions for utilizing concurrency

outlined so far focus on increasing locality. The next section introduces clustered objects,

a mechanism to help control sharing and promote locality.

1.4 Clustered Objects: a Proven Solution to Scalable OSes

Despite decades of research and development into SMP operating systems, achieving good

scalability for general purpose workloads across a wide range of processors, has remained

1.4 Clustered Objects: a Proven Solution to Scalable OSes 17

elusive. Sharing lies at the heart of the problem [4]. The rest of this section describes the

sharing problem and motivates clustered objects, a proven system used to maximize local-

ity. Section1.4.1 introduces clustered objects and Section 1.4.2 discusses where locality

management is most useful, and then introduces Scalable Clustered Objects with Portable

Events, our solution to user-level locality management.

By its very nature, sharing introduces barriers to scalability. In OSes, sharing comes

from three main sources [4].

1. Sharing can be intrinsic to the workload. For example, a workload may utilize a sin-

gle shared file to log all activity of multiple processes, or a multithreaded application

may use a shared data array across multiple processors.

2. Sharing also arises from the data structures and algorithms employed in the design

and implementation of the OS. For example, an operating system may be designed

to manage all of the physical memory as a single shared pool and implement this

management using shared data structures.

3. Sharing can occur in the physical design and protocols utilized by the hardware. For

example, some systems utilizing a single shared memory bus can cause sharing.

Stepping back, we must remember that general purpose OSes provide a basic frame-

work for efficiently utilizing computer hardware. To facilitate computer use, the OS pro-

vides an abstract model of a computer system through a set of common interfaces realized

by OS services. A critical issue in the development of OS services is to enable efficient ap-

plication utilization of hardware resources. OSes for multiprocessors must ensure not only

correctness but also scalability of system services in order to allow parallelism afforded by

the hardware to be exploited for both general purpose and explicitly parallel workloads.

It is critical that an OS reflect the parallelism of the workloads and individual applica-

tions to ensure that the OS facilities do not hinder overall system or individual application

performance. This point is often overlooked. Smith alludes to the requirements of individ-

ual applications, noting that the tension between protection and performance is particularly

1.4 Clustered Objects: a Proven Solution to Scalable OSes 18

salient and difficult in a parallel system and that the parallelism in one protection domain

must be reflected in another [4, 30]. In other words, to ensure that a parallel application

within one protection domain can realize its potential performance, all services in the sys-

tem domains that the concurrent application depends on must be provided in an equally

parallel fashion [4]. It is worth noting that this is true not only for individual applications

but also for all applications forming the current workload on a parallel system: the demands

of all concurrently executing applications must be satisfied with equal parallelism in order

to ensure good overall system performance [4].

Though the work on clustered objects in this domain has proven effective [4], the prob-

lem of sharing does not just exist at the OS level. Parallel applications that want to utilize

SMP systems to provide real performance face many of the same challenges that an OS

faces.

1.4.1 The Need for Speed: Everyone Has It

As we have seen, the development of high performance, parallel systems software is not

trivial. The concurrency and locality management needed for good performance can add

considerable complexity to any system. The fine grain locking used in traditional systems

results in complex and subtle locking protocols. Adding per processor data structures in

traditional systems leads to obscure code paths that index these data structures in ad hoc

manners. In this work, the term per processor data structures refers to the use of a separate

instance of a data structure for each processor. Clustered objects were developed as a model

of partitioned objects to simplify the task of designing high performance SMP systems

software [25].

A key to achieving scalability and performance on a multiprocessor is to use per pro-

cessor data structures whenever possible, so as to minimize inter-processor coordination

and shared memory access [25]. The software is constructed, in the common case, to ac-

cess and manipulate the instance of the data structure associated with the processor on

which the software is executing. The use of per processor data structures is intended to

1.4 Clustered Objects: a Proven Solution to Scalable OSes 19

improve performance by enabling distribution, replication and partitioning of stored data.

In general, access to any of the data structure instances by any processor is not precluded

given the shared memory architectures we are targeting. In contrast, the ability to access

all data structure instances via shared memory is often used to implement coordination and

the scatter-gather operations that distribute the data, and aggregate previously distributed

data.

As explained in more detail in the next chapter, in the partitioned object model, an

externally visible object is internally composed of a set of distributed representative ob-

jects [27]. Each representative object locally services requests, possibly collaborating with

one or more other representatives of the same clustered object. Cooperatively, all the rep-

resentatives of the clustered object implement the complete functionality of the clustered

object. To the clients of the clustered object, the clustered object appears and behaves like

a traditional object.

The distributed nature of clustered objects makes them ideally suited for the design

of multiprocessor system software. This type of software often requires a high degree of

modularity and yet benefits from the sharing, replicating and partitioning of data on a per-

resource (object) basis. Clustered objects are conceptually similar to design patterns such

as facade [14] and proxy [26]; however, they have been carefully constructed to avoid any

shared front end, and are primarily used for achieving data distribution.

Our use of the word distributed throughout refers to the division of data across a shared

memory multiprocessor system. In this context, distribution does not require message pass-

ing, but rather, distribution across multiple memory locations all of which can be accessed

via hardware supported shared memory. We distribute data across multiple memory loca-

tions in order to:

1. optimize cache line access,

2. increase concurrency,

3. and exploit local memory on architectures which have non-uniform memory access,

where some memory modules may be cheaper to access from a given processor.

1.5 Summary 20

This thesis extends clustered objects from the OS kernels, where it currently is hosted,

to user-level which is a more easily accessible environment for the average programmer.

1.4.2 SCOPE

Clustered objects present a unique mechanism for systematically enhancing processor uti-

lization. As we have seen in Section 1.3.2, mechanisms like lock free data structures and

STM are user-level constructs, and thus can be used in most programs; however, unlike

these mechanisms, to this point, all implementations of clustered objects have been real-

ized in OS kernels and have relied heavily on internal kernel support.

Clustered objects have never been implemented at user-level. So, is it possible that: in

the face of the system level complexities introduced by true concurrency, a user-level

abstraction can be shown to increase utilization without control of the underlying

system.

In this context, we take hardware utilization to mean the increased throughput caused

by CPUs not having to wait during memory latency periods. In this context, the underlying

system is taken to be an OS, and control of the OS is taken to mean the ability to change

the OS, instead of just utilizing the services it provides.

We will validate this thesis by re-implementing a kernel-level implementation of clus-

tered objects as a user-level library we call SCOPE. Then we will check to see if the same

fundamental benefits of clustered objects still apply to the user-level implementation.

1.5 Summary

The evolution of OSes from simple monitor systems with batch multiprogramming to mod-

ern day OSes with SMP support has required drastic change with respect to how concur-

rency is dealt with in order to provide better resource utilization. Through the years, the

solutions to problems faced during the evolution of OSes contributed to modern concur-

rent programming models. Although mutual exclusion based locking schemes are simple

1.5 Summary 21

and the most common form of concurrency control; lock free data structures, STM, and

RCU provide interesting alternatives to mutual exclusion based system, and hold promise

to handle heavy concurrency better by improving utilization.

From a low level perspective, the caches used in modern multiprocessors complicate

concurrency further. Sharing and false sharing can cause data access to effectively be much

slower. A highly aware programmer is able to avoid these problems through the thoughtful

application of fine grained mechanisms, but without the added structure provided by models

like clustered objects, these solutions are at best ad hoc, and instance specific.

Clustered objects appear to offer improved scalability with respect to the problems

faced by concurrent systems. Chapter 2 now takes a closer look at the clustered object

model, provides implementation details of their concrete manifestation in an OS, and dis-

cusses the expected benefits of clustered objects in general.

Chapter 2

Background: The Clustered Object

Model

This chapter provides an overview of the clustered objects model and its basic operation

within K42’s kernel clustered object system. We begin with an explanation of partitioned

objects and de-clustering, the key ideas behind the clustered objects model. In Section 2.1

we describe the basics of the clustered object model. In Section 2.2 we explain how clus-

tered objects have been implemented, and specifically how they can be accessed. Then, in

Section 2.3 we overview the benefits that the clustered objects model provides.

2.1 Object Models

This section provides an overview of the clustered object model on a conceptual level. We

start with an overview of partitioned objects, a model in which objects are broken up into

parts. We then explain how clustered objects are actually a model of partitioned objects.

Then, finally, in Section 2.1.3 we highlight the clustered objects model and define some of

its basic entities.

2.1.1 Partitioned Objects

The term partitioned objects refers to a strategy commonly used in systems to break up an

object into local components to aid distribution. In the context of distributed systems this

2.1 Object Models 23

(a) (b)

System Requests

Data paths in
the system

Figure 2.1. Requests from different processors coming into the system on the top are satis-
fied by the data represented as blocks below the thick line. In (a), common data is used and
forms a bottle neck. In (b), de-clustering style optimizations are applied to remove most of
the common data from the path and use processor specific data is used instead.

strategy is also known as the proxy pattern [26, 27, 33]. In the context of systems software

this strategy of distributing data to achieve better performance is known as de-clustering.

De-clustering has been shown to increase locality in many situations [15, 25] including in

scheduling [2], memory allocation [22], and synchronization [24].

To give a high level overview of the impact of de-clustering with respect to scalability,

Figure 2.1 shows two different systems trying to satisfy requests. System (a) experiences

poor scalability as the number of concurrent requests increases; however, system (b) re-

duces the common data between requests which reduces sharing, and therefore experiences

better scalability.

In a partitioned object model the implementation of an object is broken into smaller

logical units that are closer to the caller, each of which is able to act on behalf of the whole

object. As depicted in Figure 2.2, although externally the client sees an object with a single

interface, internally it is made up of several different elements. When a request is made

upon the object from its external interface, some mechanism redirects the request to the

2.1 Object Models 24

(a) (b)

Figure 2.2. (a) represents regular objects. The shaded outer interface (grey ring) provides
a barrier to the data on the inside. In (b), a partitioned object maintains the same interface,
but inside is made up of several more objects instead of data.

appropriate internal element where the request is then satisfied.

In the SOS distributed operating system, partitioned objects play out as what was called

fragmented objects [27]. A fragmented object is a system wide object that has a local

fragment on each node in the distributed system. When a node wants to make a request on

the system wide object, it does so by accessing the local fragment, which either has all the

necessary logic to satisfy the request locally, or will send the request somewhere else in the

system to be satisfied.

The clustered object model utilizes the partitioned object model to de-cluster objects [4,

15, 25]. This presents very different challenges in SMP architectures than for their dis-

tributed systems counterpart as issues such as communications overheads, and failure modes

are very different [25].

2.1.2 Clustered Objects as a model of Partitioned Objects

The goal of clustered objects is to take the generally ad hoc manner in which de-clustering

has been applied in previous systems and facilitate a more ubiquitous approach. To that end,

2.1 Object Models 25

clustered objects is a model of partitioned objects that helps the client apply de-clustering

to data. A clustered object presents the illusion of a single object to the client, but is actual-

ity composed of several component objects. Each component handles calls from a specific

subset of the machine’s processors. Inside every clustered object, the notion of global infor-

mation and distributed information is made explicit. Each type of data is separated out into

different classes, of which the distributed data classes may have per processor instances.

When a request is made, logic in the clustered object system allows the programmer to

decide where the request will be directed, and how to ultimately satisfy the request. What

data is global, what data is distributed, and how the distribution and aggregation of the

data occurs is defined by the creator of a clustered object and is transparent to the client.

This customization is what helps make clustered objects easier for programmers to build

scalable objects and therefore services that will scale better.

2.1.3 The Clustered Object Model: Roots and Representatives

Clustered objects are referenced by a common clustered object reference that logically

refers to the whole clustered object; however, each access to this common reference is

automatically directed to a local representative (rep) [15]. Figure 2.3 shows a simple case

with three processors marked P1, P2 and P3. Each processor accesses the clustered object

through a global reference, then the clustered object system redirects the call to a local

representative assigned to that processor.

Every clustered object is made up of a root and one or more representatives. These

components correspond directly with global and distributed data. Roots contain global

data, reps contain instances of distributed data and the methods that control and aggregate

the distributed data. A root is not directly accessible except through its representatives;

so, in this respect representatives are responsible for providing local access to global data.

Roots themselves are responsible for dictating which reps are assigned to handle requests

in any given locality domain. In this context we define a locality domain as the memory

2.2 Clustered Object Implementation 26

Figure 2.3. Processors P1,P2 and P3 access a clustered object through its common ref-
erence. The request made to the global reference redirects the call to a different rep for
each processor, so that each processor is using a different rep. The root is not shown in this
figure.

used by a particular processor. The class diagram in Figure 2.4 shows the basic classes that

comprise a clustered object. Each root has one or more reps to satisfy incoming requests.

2.2 Clustered Object Implementation

This section overviews some implementation details of Clustered Objects, and then details

of the K42 implementation of clustered objects. In Section 2.2.1 we describe the Clustered

Object Manager, the object responsible for coordinating the clustered object runtime in

K42. Sections 2.2.2 through 2.2.4 review the mechanisms typically used for lookups, iden-

tification and accesses of clustered objects: translation tables, clustered object IDs, and the

dereferencing system.

2.2 Clustered Object Implementation 27

2.2.1 The Clustered Object Manager

In K42, the Clustered Object Manager (COSMgr) is responsible for coordinating and con-

trolling the Clustered Objects runtime environment and the clustered objects life cycle [4].

The COSMgr’s responsibilities include:

• system initialization including all of the object tables,

• clustered object allocation,

• clustered object deallocation (via garbage collection).

To ensure scalability of the Clustered Objects facility, the COSMgr is itself a clustered ob-

ject and hence uses many of the services that it provides. As might be expected, this leads

to a complex and very incremental development and creation process. Because the COS-

Mgr is a clustered object, it must abide by the same rules as all other clustered objects, and

experiences all of the same benefits of being a clustered object mentioned in Section 2.3.

2.2.2 Translation Tables

Two of the key elements of the COSMgr are the local translation tables and the global

translation table. These tables store the basic information needed to access a clustered

object. Both tables hold translation entries, a small set of data that is needed to access

and manage a clustered object in a performance conscious manner. A global translation

entry is three machine pointers long, whereas a local translation entry is only two pointers

long. The Global Translation table is a single array that contains enough elements to have

one entry for each clustered object in the system. The local translation tables each have the

same number of elements as the global table; however there is a local table for each locality

domain in the system. The local table’s corresponding entries contain the data necessary

to access the representative of the clustered object that is assigned to the locality domain

from which the current request originated.

2.2 Clustered Object Implementation 28

2.2.3 A Clustered Object’s ID

In the current implementation of clustered objects in K42, a clustered object’s system wide

unique ID is its index into these translation arrays. For example, a clustered Object with ID

of 5 would have an entry in the global array at element 5, then in each locality domain the

local translation table for that domain will have the corresponding representative’s entry in

element 5.

One problem with this system is that slots cannot be reused in the arrays, or else the

unique identifier might be used more than once. As new clustered object runtime systems

are implemented there is a drive to separate clustered object’s IDs from their associated

lookup mechanism [5].

2.2.4 Accessing a Clustered Object

One of the important features of K42’s Clustered Objects facility is their optional lazy

initialization. When there is a large number of processors on the system, having unused

representatives for each processor can drastically and unnecessarily increase the memory

usage of a clustered object. To solve this problem, when a clustered object is created, only

the root is allocated, then the first time a clustered object is accessed on each processor that

processor’s representative is created. When a local representative is not active in the local

table, we call that suffering a miss. When a miss happens, the global table is consulted for

a miss handler. Miss handling functionality is built into a base class of the clustered object

roots, so the global table returns the root for the particular clustered object that suffered the

miss. Then it is the miss handler and root’s responsibility to take some action.

The particular course of action the miss handler takes is dependant on the desired out-

come. In the common case of a lazy initialization, a rep would be created, the local table

entry for the processor that is suffering the miss updated, and the rep is returned to the

system to begin execution on the desired method. If a certain degree of clustering was

required, for example, one rep per 4 processors, the miss handler could assign local table

2.2 Clustered Object Implementation 29

+handleMiss()

MissHandler

+getRep()

Root
-myRoot : Root

Rep

Public Interface

11..*

aRealRootaRealRep

Client Program

Figure 2.4. The basic clustered object classes. Each root has one or more reps.

entries and create reps accordingly. The miss handler can even not change the local table

entry, causing future access of the clustered object on that processor to continue to miss. In

Tornado (K42’s predecessor), the miss handling process takes approximately 150 (MIPS)

instructions [15], so some overhead is incurred to handle a miss, though not enough to

preclude the use of this mechanism for general purpose dynamic actions [15].

The implementation of the mechanism explained above is not trivial to achieve while

maintaining language type safety. When a program using clustered objects is compiled, we

want the compiler to treat the methods in the clustered objects as those that are called when

a clustered object is dereferenced; but in actuality, what we want to happen is for either

the method to be called or the miss handling to be triggered, depending on the state of the

clustered object. The mechanism used to accomplish this behavior is called a trampoline.

To understand how the trampoline works, it is necessary to briefly overview how ab-

stract methods are accessed in some object-oriented languages. At the time of compilation

in object-oriented languages, it is not always possible to determine which method to run

2.2 Clustered Object Implementation 30

 Rep

 Rep

 Rep

 Root

i

i Local tables

Global Table

Figure 2.5. Processors P1,P2 and P3 accessing a clustered object through its common
reference (i). The first time they try to access it, each suffer a miss. The global table on
the top is consulted for the miss handler which assigns one of the reps on the bottom, and
changes that processor’s local lookup table on the bottom to match that rep. From that
point on, the local table’s value is used to perform a quick lookup.

2.2 Clustered Object Implementation 31

because of inheritance. To solve this problem, the method lookup takes place at runtime.

One method of resolving a method at runtime is by using a virtual dispatch table (vtable).

When a method of an object is invoked, that object has a reference to a class descriptor that

contains the appropriate vtable. The vtable contains the necessary information to correctly

perform a lookup.

The clustered object trampoline mechanism makes a special object, and then overrides

its vtable with a custom version of its own creation. This new vtable redirects the method

lookups to custom assembly code that saves the state of the registers, and notes the method

number that was being called, and the table entry that was used to make the call. When a

clustered object is created, its root is created and placed in the global table; however, the

reference that is set in the local tables is that of this special object, not any of the reps.

When a clustered object’s dereference takes place through the local tables, the tram-

poline code that was embedded into the special object is called. This triggers assembly

code that moves the stream of execution into a special static method. This method has

two pieces of information, the local table entry used to dereference, and the number of the

method from the vtable. The local entry is then translated into the corresponding global

entry, and the miss handler for that global entry is called.

2.2.5 Garbage Collection

One popular feature of modern object oriented languages is automatic reclamation of mem-

ory the program is finished with. This process of reclamation - known as garbage collection

- removes the burden of memory management from the programmer, in exchange for some

extra runtime cost. The implementation of Clustered Objects in K42 has semi automatic

garbage collection functionality. Though it is important to mention this as a feature, we do

not go into detail as this feature was not central to the thesis of this work, and has yet to be

implemented in our prototype.

2.3 The benefits of clustered objects 32

2.2.6 K42 Clustered Objects: Implementation Details

Creating a clustered object in K42 starts with the Clustered Object inheritance hierarchy.

Clients extend these base classes to create new clustered objects of their own design. Fig-

ure 2.6 shows the basis of K42’s Clustered Object hierarchy, and where client classes are

able to extend a base clustered object to create their own. At the top of this hierarchy

are several different pre-made clustered object configurations. For example, one clustered

object base class provides a fully replicated clustered object which produces one rep per

processor, another base class provides a clustered object with a single rep for all the pro-

cessors. We will return to this hierarchy again with Figure 4.2.

To give a better idea of what a real clustered object might look like, Figure 2.7 shows

how a simple replicated clustered object works in K42. The CounterLocalizedCO class is

a rep that provides an integer counter that has a local integer on each processor. When the

counter is incremented or decremented, the local copy number is used, then when the value

is called, all the reps have to be polled. This same code is reintroduced in Chapter 5 as the

basis of the evaluation of our prototype. The details of this code are not critical, but this

example illustrates what a simple clustered object might look like. Appendix B has more

clustered object code.

2.3 The benefits of clustered objects

The clustered objects model has many benefits [3, 4, 15, 25]. This section overviews some

benefits. Broadly, the benefits can be thought of as benefits for the programmer, and ben-

efits to utilization. The following subsections lists some of the benefits the programmer

experiences from using clustered objects, and lists some of the reasons clustered objects

increase utilization, respectively.

2.3 The benefits of clustered objects 33

COSTransObject

+handleMiss()
#myRef : CORef
COSMissHandlerBase

COSMissHandler

+getRep()

CObjRoot

-myRoot : CObjRoot
CObjRep

Public Interface

CObjRootSingleRep

CObjRootMultiRep

1
1..*

11

aRealRootaRealRep

Client Program

Figure 2.6. The K42 base classes that are used to create a clustered object

2.3 The benefits of clustered objects 34

class CounterLocalizedCO : public integerCounter {
int _count;
CounterLocalizedCO() { _count = 0; }

public:
static integerCounterRef create() {

return (integerCounterRef)((new
CounterLocalizedCOMH())->ref());

}
virtual void value(int &val) {

MHReplicate *mymh=(MHReplicate *)MYMHO;
CounterLocalizedCO *rep=0;
_count=0;
mymh->lockReps();
for (void *curr=mymh->nextRep(0,(ClusteredObject *&)rep);
curr; curr=mymh->nextRep(curr,(ClusteredObject *&)rep)) {

_count =rep->_count;
}
mymh->unlockReps();

}
virtual void increment(){ FetchAndAdd(&(_count),1); }
virtual void decrement(){ FetchAndAdd(&(_count),-1); }

};

Figure 2.7. An example of a replicated clustered object.

2.3 The benefits of clustered objects 35

2.3.1 Programming Benefits

Some of the benefits experienced by the programmer include:

Ease of use encouraged by:

1. Clustered objects reduce the use of ad hoc mechanisms for increasing locality.

Our experience has shown us that without some underlying model like clustered

objects it is hard for programmers to consistently and correctly apply these

optimizations.

2. For the programmer, accessing a clustered object is no harder than a regular

object access.

3. The assisted destruction of a clustered object is actually easier than regular

object destruction.

4. Clustered objects do not need existence locks, a clustered object can be accessed

any time. This also increases utilization by avoiding locking overhead.

5. Incremental optimizations. Initially a clustered object can consist of just a sin-

gle rep, this is logically the same as a non clustered object implementation of an

object. If or when in the systems evolution the clustered object becomes more

contended, a distributed or partially distributed implementation can be swapped

in without any changes to the client code.

Linguistic features supported:

1. Clustered objects preserve the strong interfaces essential to good object-oriented

design.

2. Clustered objects are type safe.

3. Clients need not concern themselves with the internal structure of the clustered

objects; neither the location nor the organization of the reps affect what the

client sees.

2.4 Summary 36

2.3.2 Utilization

Some of the reasons that clustered objects promote better utilization:

enables utilization by:

1. The structure provided by clustered objects facilitates the type of optimizations

normally applied to reduce sharing and gain better multiprocessor performance

and scalability. These include replication, migration, partitioning, and locking.

2. Furthermore, the process of changing the internal structure of a clustered object

can even be done dynamically for systems that need to accommodate a varying

workloads of requests.

3. Similarly, several different implementations of the same clustered object with

the same interface can be present in the system at one time. Each of these

implementations can be optimized for a different usage pattern.

helps efficiency with:

1. The time overhead incurred for accessing a clustered object is minimal (one ex-

tra instruction); however, clustered object creation does have a higher overhead

than regular object creation.

2. Clustered objects optionally support lazy creation of reps, so memory is not

wasted on unused reps.

2.4 Summary

This chapter has presented a brief summary of the clustered object model. Clustered objects

are a model of partitioned objects. The reason that clustered objects partition their objects

is to promote the use of the de-clustering strategy which is a proven method of increasing

locality in operating systems. The end result of this strategy is increased utilization.

A clustered object is composed of a single root and one or more reps. Reps are the

primary unit of distribution across processors, and act as the local proxies for the entire

2.4 Summary 37

Benefit
Programming:
ease of use promotes optimization

reduces ad hoc mechanisms
easy access
easy destruction
no existence locks
easy incremental optimization

language features strong interface
type safe
oblivious clients

Utilization:
promotes utilization promotes optimization

easy incremental optimization
dynamic adaptation
multiple implementations

efficiency minimal access overhead
no existence locks
lazy creation of reps

Table 2.1. Summary of the benefits of using clustered objects

clustered object. When there is no local rep, a miss handler object is consulted to locate or

create a new local rep. This forms the basis for the clustered object lazy initialization of

reps. A combination of the clustered object’s ID and reference are what is used to populate

local and global tables to allow access to the reps. Once these tables are populated, ac-

cessing a clustered object requires only one instruction more work than accessing a regular

object.

Using clustered objects has many benefits. To summarize these benefits, Table 2.1 lists

them.

Though there are numerous benefits from clustered objects, they have not really been

adopted by many programmers. This is because, up until now, clustered objects have not

been able to be used anywhere outside of an OS kernel. The next chapter details our

solution to this situation.

Chapter 3

Challenges in Building a New Clustered

Object Library: Dependencies and

Constraints

Clustered Objects have shown their value in the concurrent operating system K42 [4].

There are also other clustered object runtime facilities already in research operating sys-

tems [6,15] and there are plans to integrate clustered object style systems into new systems;

however, none of these are in systems that could be considered mainstream.

The Clustered Object model as introduced in Section 2.1.3 is a general model which

could be implemented in many different ways. The model itself has no relation to a partic-

ular operating system. Furthermore the model has no direct relation to an OS kernel.

This chapter explains the dependencies of previous clustered object systems in the con-

text of an attempt to take the Clustered Object facility from the K42 operating system’s

kernel and move it into a user level library [32] for the Linux [20] operating system. Linux

is a popular open source operation system originally written by Linus B. Torvalds [20]. We

call this prototype Scalable Clustered Objects with Portable Events or SCOPE. Specifically,

SCOPE aims to transplant the Clustered Object facility that was heavily integrated with the

K42 kernel and export it into a more portable library for Linux applications. This library

would have a minimal dependence on the underlying operating system; hence, it would be

more portable. The result would allow Linux programs to load the Clustered Object facility

3.1 Leaving the Kernel 39

at runtime, and then use its features much like a thread library, such as the pthreads [19]

library.

This chapter details the challenges we faced in the design of SCOPE. First, we describe

the different delivery modes for the clustered object service, then we visit the dependencies

that previous clustered object implementations have had on the OSes they were built for.

3.1 Leaving the Kernel

A reimplementation of Clustered Objects for Linux could have taken many different forms.

Linux is open source, so development could have taken place anywhere from the Linux

kernel to user-level. This section considers these options and describes the advantages that

the library option has over all the others.

3.1.1 What are the options?

In the Linux environment, there are four places we consider that the clustered objects model

could have been re-implemented.

The Linux kernel: the Clustered Objects model could have been implemented — as it

has been in the past [6, 15] — as a part of an OS kernel. This would allow for

unrestricted access to the system [10]; however, the maintenance of a kernel patch

(which is how most extensions to the Linux kernel are provided) can be hard, and any

bugs caused by the implementation could easy crash the entire system instead of the

process which clustered objects are being used in. Besides those two development

problems, a kernel patch would hinder adoption as most Linux users don’t know how

to correctly recompile their kernel from its source code.

A Linux loadable kernel module: Linux allows for dynamically loadable kernel mod-

ules [10, 17]. These modules have access to most kernel resources, and do not have

to be compiled into the kernel. Kernel modules have less access to the kernel, so they

3.2 Dependencies 40

are less able to cause a system crash. Additionally, kernel modules are dynamically

loadable, so the kernel does not have to be recompiled (and the system restarted each

time), this would ease development and would increase adoption [17].

A Linux user level program is the simplest option of these four. The clustered object

source code is just imported into the user’s program and compiled. This is how

some simple systems like unit testing frameworks are executed. Of course in a user-

level program, the SCOPE code has no direct access to the kernel except through the

system call interface, but the user code has easy access. The one downside to this

option is that if there is more than one program using SCOPE system, the code would

be duplicated. This would also lead to maintenance problems as the SCOPE code in

each program would have to be updated separately.

A Linux user level shared library is the most enticing of the four. A library has all the

benefits of the user level program, without the disadvantages mentioned above. The

SCOPE code is shared amongst client applications, and Linux’s library versioning

system allows multiple version of the library to coexist [32]. The user-level library

also has the advantage of being the most portable between (multiple versions of

Linux and possibly even other) operating systems. A user-level library does still

have the disadvantage of restricted access to the kernel.

3.2 Dependencies

A Linux user level shared library is an ideal solution in this case; however, since all other

clustered object implementations have been in OS kernels, it is of value to see what kernel

resources they relied on. In the predecessor to K42, Tornado, several things were neces-

sary [3]. Tornado’s concurrency is fundamentally necessary, as well as three kernel facil-

ities: object translation for looking up clustered objects, memory allocation for acquiring

memory that will not cause sharing, and IPC facilities for triggering execution on other

processors are all facilities necessary for Tornado’s Clustered Objects [3]. Special error

3.2 Dependencies 41

handling mechanisms are also used to achieve efficient and robust operation. The remain-

der of this Chapter describes in more detail how these dependencies play out in the clustered

object implementation.

3.2.1 Concurrency

It is obvious that clustered objects require concurrency. In Tornado, there were threads

of kernel execution. Beyond simple multitasking, locking/synchronization, and atomic

operations are required. Tornado had all these synchronization mechanisms.

3.2.2 The Object Translation Facility

When a clustered object is accessed on any given processor, the Object Translation Facility

in Tornado is used to locate the clustered object’s representative on that specific processor.

This is implemented as two sets of tables per address space. The tables are: a global ta-

ble of pointers to a per clustered object management object, and a per processor table of

representatives. When there is no representative listed in the processor table, the global

table is consulted for a management object which manages all instances of clustered ob-

jects [3, 15]. These tables illustrated in Figure 2.3, form the basic mechanism that allow

clustered objects to be accessed and allow lazy representative creation.

3.2.3 Kernel Memory Allocation

The Kernel Memory Allocation (KMA) facility manages the free pool of global and per

processor memory. It can allocate memory pages that are local to a target processor.

On certain machines, the access times for different parts of memory by different pro-

cessors can vary. This phenomenon is known as non-uniform memory access or NUMA.

Many large SMP computers experience strong NUMA effects, and some new multi-core

processors also experience a NUMA-like effect due to the way they access the computer’s

memory bus.

3.2 Dependencies 42

In the Clustered Objects facility in Tornado, the C++ new operator is overloaded to

use the facilities of the KMA to ensure that the default memory allocation behavior is to

allocate memory from the processor that made the call [3] and that the allocated memory

is padded to the nearest cache line when necessary. The location of the memory allocation

close to the processor reduces NUMA effects during accesses and the padding has the effect

of stopping false sharing. On non-NUMA machines, the location of the memory allocation

is not of great concern; however, the padding still is.

3.2.4 Protected Procedure Call

The Protected Procedure Call (PPC) facility is Tornado’s IPC mechanism. Protected Pro-

cedure Calls allow for two things: a processor to make a call to a clustered object in a

different processor’s and memory space, and allows a processor to invoke a method to be

run on a different processor in the same memory space. Tornado is a micro kernel style

OS [15, 31], so most of the messages that are passed between servers are done via the

PPC mechanism; hence, PPC is heavily performance optimized and generally considered a

lightweight mechanism [15].

In the context of clustered objects, PPC performs an interesting function: it can be used

to perform operations on large data sets remotely. If the data is already in the cache of

the remote processor, this can save cache misses on both processors. In Tornado, the PPC

mechanism only takes the runtime equivalent of a few tens of cache misses to execute [15],

so it can be used in any case where a local operation would take more cache misses than

that.

3.2.5 Error Handling

As an operating system must be resilient, there is error handling built into K42 and Tor-

nado. In K42 there is a system type called a SysStatus. The SysStatus is a 64-bit

value that is passed back from almost every function call in the system, and regular return

3.3 Summary 43

values are passed as reference parameters of the functions. This convention is used in pref-

erence to exception handling mechanisms in C++ for efficiency and customization reasons.

Exceptions have been shown to have some overhead associated with their use, so the K42

developers did not want to use them in their kernel code. SysStatuses can be created by

low level interrupt handlers, a venue where exceptions cannot be used effectively.

3.3 Summary

The Linux OS provides a wide variety of delivery methods for the clustered object facility.

Of these, a Linux shared library encourages portability by being less dependant on the

system, but still provides features like versioning that would make SCOPE easier to develop

and manage.

However, in a Linux shared library, the library code does not have direct access to

kernel resources, but rather it has to use the same system call interface that all other user-

level programs do. Without direct access to the kernel’s resources, SCOPE is not able to

work like previous clustered object implementations. These dependencies are an indication

of the challenge in moving Clustered Objects out of the K42 kernel. Since some of these

dependencies are for systems traditionally found only in an OS kernel, reproducing them at

the Linux user-level presents some interesting design challenges. The next chapter details

some of our design decisions and the solutions we found for these dependencies that allows

SCOPE to function at Linux user-level.

Chapter 4

SCOPE: Prototype Design and

Implementation

All of the mechanisms described in Section 3.2 and summarized in Table 4 below are

necessary to provide the functionality of Tornado’s and K42’s Clustered Object system;

hence, some suitable equivalent had to be found for user-level in Linux. This chapter

details how the design of SCOPE tries to satisfy these dependencies, the design decisions

we made and some of the incremental process we used to make a user-level library out of

the K42 implementation of Clustered Objects.

This chapter begins by showing how we satisfied each of the five dependencies men-

tion in Section 3.2. Section 4.1 shows how pthreads can be used as a concurrency model.

Section 4.2 shows how we reproduce object translation with our portability events. Sec-

tion 4.3 discusses reproducing kernel style memory allocation. Finally, Sections 4.4 and 4.5

describe how we reproduced the PPC IPC mechanism and the error handling mechanisms

Dependencies Function in K42/Tornado
Concurrency need a model of concurrent execution
Object Translation necessary to perform a clustered object lookup
Memory Allocation necessary to supply padded and pooled memory
Protected Procedure Call necessary for providing bulk remote data processing
Error Handling necessary for efficiently reporting low level errors

Table 4.1. The dependencies the Clustered Object facility had in Tornado and K42, and a
brief summary of their purposes

4.1 Concurrency 45

were reproduced. This chapter concludes with a description of the iterative implementation

process employed during the development of SCOPE.

4.1 Concurrency

As discussed in Section 3.2, clustered objects need some sort of concurrent execution model

upon which to work. Concurrency can be reproduced in the Linux user-level with the

pthreads [19] library. Pthreads allows the programmer to set an attribute that maps newly

created threads directly to ”system” threads. System threads are treated as processes in the

Linux scheduler. This provides us with the concurrency. Pthreads also provides mutexes,

semaphores, and barriers which can be used for locking and synchronization [12].

Finally, to implement atomic operations we are able to embed custom platform specific

assembly code into the source code; however, since Tornado and K42 were designed for

special hardware1, we are not able to reuse any of their atomic assembly code. To interface

with the remaining K42 code in SCOPE, wrappers are needed to wrap things like the K42

Lock class with a pthread based implementation.

Some of the simple operations that were needed were an atomic FetchAndAdd which

atomically takes a value from memory and adds a value from a register to it. Another

important atomic operator is CompareAndSwap which compares the contents of a memory

location to a given value and, if they are the same, modifies the contents of that memory

location to a given new value. CompareAndSwap can be used to implement synchronization

mechanisms. Equivalent versions of all the K42 PowerPC atomic assembly routines had to

be recreated.
1Tornado was written to run on MIPS processors, and K42 on PowerPC 64-bit processors. K42 was

initially supported on X86 32-bit and PowerPC 32-bit as well, but those versions were deprecated and then
eventually removed.

4.2 Object Translation Facility 46

4.2 Object Translation Facility

There is no equivalent to the Object Translation Facility in the Linux user-level. As the

dispatch that is used in the K42 Clustered Objects is heavily integrated with the rest of the

Clustered Objects facility, we took the simple approach of using the K42 Object Transla-

tion facility in SCOPE. The Object Translation facility had to be changed slightly though.

The fundamental difference between the Tornado/K42 kernel and Linux user-level is the

inability to map real addresses to different physical address on a per processor basis. The

K42 virtual memory system maps addresses on a per processor basis, so the local represen-

tative lookup table could be located at the same virtual address for each processor, but be

backed by a different physical memory and therefore a different table.

The remainder of this section provides details about the translation facility. Section 4.2.1

introduces our new DREF preprocessor macro that allows us to perform a lookup in SCOPE,

then Section 4.2.2 introduces our portable event structure, and Section 4.2.3 evaluates the

benefits of this new structure.

4.2.1 DREF: the Dereferencing Macro

The use of this local table means the dereference of a clustered object only takes two

regular pointer dereferences. A reference to a clustered object in K42 (called a CORef)

is a pointer into this local table. In the code that access a clustered object, that makes

an access of a clustered object c with method m looks like **c->m(); however, the K42

Clustered Objects implementers realized that this was implementation dependant so they

created a preprocessor macro called DREF which performs a clustered object dereference,

so a typical clustered object access in K42 actually looks like: DREF(c)->m(). Of course,

DREF is just defined to prepend the **.

The use of the DREF macro eases our implementation because we can define it to

mean whatever we need, so we are not limited to the ** straight dereference. Redefining

the DREF can give us a way to make up for the lack of per processor memory. In a newly

4.2 Object Translation Facility 47

defined DREF we can look up which processor we are on, then access the appropriate local

table.

There are several ways that we could find which processor we are executing on:

• the X86 cpuid assembly instruction may be able to be used; however, this instruction

has the side effect of filling all the registers and flushing the processor’s pipeline.

• A Linux system call could be used to find out the current CPU that a thread is running

on. Unfortunately, system calls are a very high overhead mechanism, so they are not

considered further.

• If we make a simple assumption that each thread is running on a different processor

(the default for pthreads in Linux and can be easily set if not), then we can just

use information stored in the thread stack. In pthreads, the pthread key functionality

allows you to store a named piece of data that is specific to each thread. For example,

we could create a key to represent the virtual processor (VP) that we designate the

current thread to be running on. We could even completely remove our assumption if

we used Linux’s scheduling API to manually assign threads to processors, although

this removes some of the benefit of having kernel level threads in Linux.

4.2.2 Portability with Events: START EVENT and END EVENT

To enhance the portability of SCOPE, we introduce the notion of a clustered object event.

An event is an environment in which a program can make calls to clustered objects. For the

duration of an event, all the information necessary to complete a dereference is available.

The event is responsible for preparing2 the current calling thread, and for triggering any

necessary cleanup3 after an event is over.

Starting an event is simple, the client program calls the START EVENT macro. The

2In SCOPE to prepare a thread the current CPU that the thread is running on has to be resolved, the base
pointer to the current CPU’s local translation table has to be acquired, and a pointer to the current generation
record has to be established (if garbage collection is active).

3Cleanup entails checking if any dynamic operations are needed like a migration, and triggering any
necessary garbage collection statistics to be updated.

4.2 Object Translation Facility 48

CORef ref;
ClusteredObject::Create(ref);
//In K42
DREF(ref)->someMethod();

//vs. in SCOPE
START_EVENT;
DREF(ref)->someMethod();
END_EVENT;

Figure 4.1. An example of how a clustered object is called.

START EVENT macro is the system specific macro that will set up the current thread for

a clustered object dereference. In our current pthreads implementation, the macro checks

the pthread key values to ensure they are initialized, and in future versions will check if a

representative migration to another processor has been triggered and act accordingly, and

record garbage collection information (an active event count to detect quiescent states).

After a clustered object dereference has happened, the client program should call the

END EVENT macro. Like the start event macro, this is a system specific macro. END EVENT

marks the end of an event. In the case of our current pthreads implementation, the macro

does nothing; but, in a future version it will record garbage collection information, then

if necessary trigger clustered object deallocations. Figure 4.1 is a code example of how a

clustered object is accessed in K42 and with event macros.

When SCOPE is ported back to K42 or other systems like Microsoft Windows or a

Java virtual machine like IBM’s J9, these macros can be changed. For instance in K42,

START EVENT and END EVENT could be empty because in K42 all of the features that

are supported do not need to be triggered by the client program.

4.2.3 Access Patterns and Portability

The goal of these events is to increase the portability of SCOPE and clustered objects

written for SCOPE. The event model makes it simple for a clustered object written on one

4.3 Kernel Memory Allocation Facility 49

system, for example the preexisting set of K42 clustered objects, to run on other system

(such as SCOPE’s pthread version).

With the three macros discussed in the sections above, we can see what the standard

access of a clustered object looks like in SCOPE. First, a START EVENT is called, then the

DREF, then the END EVENT.

All of that said, if the client programmer knows which system the clustered object is

intended for, and how that system works, they can opt to only call the event macros when

they are actually needed. In the case of the current pthread version, it would suffice to

call the START EVENT only once when a new thread is created; however, doing so is not

portable to other systems, or possible later versions of the pthreaded system.

4.3 Kernel Memory Allocation Facility

Although we can attempt to reproduce some subset of the functionality associated with the

kernel allocation facility, the custom memory allocation available in the K42 and Tornado

kernel are hard to completely reproduce at user level. In SCOPE, we need a padded allo-

cator to ensure that consecutively allocated small objects (smaller than a cache line) do not

experience the false sharing mentioned in Section 1.2.2 because they end up residing on

the same cache line.

To reproduce padded allocation, we decided to use a function wrapper for the malloc

function which is used to obtain new free memory from Linux. Extra memory is allocated

by the malloc wrapper to ensure that the memory block returned to the caller is aligned to

the nearest cache boundary. We do not dynamically determine cache line sizes, but allow

it to be set at compile time as a constant. Because the Linux paging system is controlling

the memory behind what we allocate, we cannot assume a linear mapping of addresses

to memory; however, because page sizes are multiples of the cache line size, our padded

allocator should still not allow consecutively allocated memory to end up on the same cache

line. Pooled allocators (which create a pool of memory for each processor then allocate

4.4 Protected Procedure Call Facility 50

from that pool) are also found in K42.SCOPE could benefit from a pooled allocator, but at

this time, one has not been implemented.

4.4 Protected Procedure Call Facility

Applications that use SCOPE are intended to be run in a shared memory environment,

so there is no need for IPC to be used to communicate inside SCOPE. Since the PPC

facility’s benefits are for only a certain small set of cases as outlined in Section 3.2.4,

and its implementation would be quite complex, PPC has been omitted from the SCOPE

prototype.

4.5 Error Handling

To reproduce the error handling functionality of the K42 in SCOPE we introduce the notion

of a Clustered Object Return Code (CORC). The problem with the K42 SysStatus is that

for many applications an encoded 64-bit value is too low level. The CORC is a more heavy

weight mechanism that carries more information about the last error, including a possible

error message, and more details about how the error occurred. These aid in debugging

SCOPE and allow for more complete error reporting to the client application.

For example, when an error is triggered in K42, all the client sees is an error code and

module code which identifies where the error was triggered. If the error information is

published in the K42 error lookup system, the client can then look up what that error code

means, and cross reference with the module where it was triggered. In SCOPE the error

message, not only holds the K42 error information, but the file and line number where the

error was triggered, a plain English description of the error, and then any extra information

about the error that might be necessary.

4.6 Implementation Process 51

4.6 Implementation Process

The majority of the code for SCOPE was taken directly from the Clustered Object facility

in K42; however, there are major differences in how SCOPE is implemented compared to

Clustered Objects. An iterative process was used to incrementally move parts of Clustered

Objects into SCOPE. First, a central class or classes was chosen, and imported, then ev-

erything that those classes relied on is imported. At some point, the process reaches the

interfaces that Clustered Objects uses to access other subsystems, at that point the appropri-

ate stubs were created. Much of the functionality was removed from the classes to simplify

the importation process.

Figure 4.2 is an extension of Figure 2.6 showing how we implemented SCOPE. When

importing these classes, first we created a CObjNullRep class which was a completely

empty clustered object (just a root, no reps), this is represented as everything above the

mid line in Figure 4.2. As the state of the implementation advanced, we added a COb-

jRootSingleRep which is a clustered object with a root and a single representative. This

was the second stage of the implementation. The CObjRootSingleRep was the first real

clustered object that was supported; finally, once CObjRootSingleRep was working, COb-

jRootMultiRep was imported. This was the third and final stage. CObjRootMultiRep is

a fully distributed clustered object with one representative per VP, it is the most complex

clustered object type to support, which is why it was saved for last.

The second phase of the importation focused on the basis of the Clustered Object run-

time infrastructure, the COSMgr. Figure 4.3 shows the COSMgr hierarchy and some of

the classes that it relies on. The design of the COSMgr is taken directly from the K42

Clustered Object facility. The COSMgr is responsible for keeping track of VPs (in VP

sets), and creating and maintaining all of the clustered object lookup tables (the Transla-

tion Entries or TransEntry). The COSMgr makes use of several machine specific atomics,

the system scheduler, and the system’s memory allocation. For clustered object creation

there is a Factory class. For important clustered objects (like the COSMgr) reservations

4.6 Implementation Process 52

COSTransObject

+handleMiss()
#myRef : CORef
COSMissHandlerBase

COSMissHandler

+getRep()

CObjRoot

-myRoot : CObjRoot
CObjRep

Public Interface

CObjRootNullRep

CObjRootSingleRep

CObjRootMultiRep

1

1..*

1 1

13

2

Figure 4.2. The three stage implementation of SCOPE. In the first stage we imported ev-
erything above the thick middle line. Then, we imported the SingleRep and then the Multi-
Rep classes and functionality.

4.7 Summary 53

can be made in the translation tables with the COGlobals class. To facilitate the lookup

process, COVTable overwrites clustered object’s initial vtables with that of the DefaultOb-

ject’s. In the K42 version and future versions of SCOPE, garbage collection is also done in

the COSMgr.

The native K42 version of the COSMgr is a multiple representative clustered object.

Obviously this could not be used until the multiple rep code was working; so, to simplify

our implementation we created a single representative version of the COSMgr to be used

with SCOPE. The single representative version will not be able to handle as large a load

during concurrent clustered object creation as a multi-rep implementation, but the access

performance of the clustered objects is not affected by this choice.

As SCOPE evolved, so did our target environment. At first, SCOPE and its test pro-

grams were just compiled as a simple Linux user-level program as mentioned in Sec-

tion 3.1.1; but as SCOPE evolved, we shifted SCOPE into a Linux shared library. This

shift allowed us to have more test programs, and would allow an actual client program to

start using SCOPE.

4.7 Summary

In this chapter we detailed the design decisions we made in the initial implementation of

SCOPE, and we have shown how we reproduced the five dependencies previous implemen-

tations had on kernel services. This resulted in the creation of our portability events. These

events allow us to correctly set up the runtime environment without the aid of custom OS

code. Finally we describe how we implemented SCOPE with an iterative process to satisfy

the complex interdependencies of the previous system.

The design decision presented above allowed us to implement a functional clustered ob-

ject system at Linux user-level; however, these decisions also fundamentally alter the way

a clustered object is accessed. The next chapter evaluates SCOPE to see how it performs

both in terms of overheads and in terms of the benefits mentioned in Section 2.3.

4.7 Summary 54

COSMgr

COSMgrObject

+handleMiss()
#myRef : CORef
COSMissHandlerBase

COSMissHandler

+getRep()

CObjRoot

CObjRootMultiRep

1 0..*

TransEntry

Atomics

Scheduler

MemoryAlloc

COGlobals VPSet Factory DefaultObject COVTable

Figure 4.3. The COSMgrObject is a clustered object that organizes the runtime system. It
relies on many other classes in the system.

Chapter 5

Testing and Validation

This chapter presents an initial evaluation of SCOPE. Here, we attempt to validate if, in

the face of the system level complexities introduced by sharing, a user-level abstraction

can increase utilization without control of the OS. First, in Section 5.1, we verify some

of the assumptions that the library was built upon. Then in Section 5.2 we evaluate the

performance of the new library to see if it can provide benefit to a host system. Finally

in Section 5.3 we discuss the benefits outlined in Section 2.3 to establish whether SCOPE

supplies these same benefits.

5.1 Evaluating Assumptions

This section details the assumptions we made when designing SCOPE. The intent of clus-

tered objects is to reduce sharing, thus reducing the synchronization overhead and bus

contention caused by sharing. But, is all this work to reduce sharing needed? On the

specialized hardware that Tornado ran on, it has been shown that reducing sharing was

advantageous [15]. It has also been shown that, on the PowerPC hardware that the K42

operating system was designed for, reducing sharing is advantageous [4]. But, on a com-

modity X86 machine made by AMD, sharing might not have the same impact as seen on a

24 processor machine [4]. Some simple tests are needed.

In the first part of this chapter, we present a simple set of experiments in the context of

an integer counter that attempts to analyze the impact of sharing on an X86 system, and

5.1 Evaluating Assumptions 56

then report on the results of these experiments. The second part of this chapter presents an

evaluation of the performance of SCOPE in the context of the same integer counter, and

then in the context of a broader software engineering characteristics.

5.1.1 Quantifying Sharing

There are sources of variability in our test; but, these sources exist in real systems as well.

Although they make getting accurate test numbers harder, they are an accurate recreation

of the environment where real programs run.

Multiprocessor machines are complex, both in-terms of architecture and software. From

a testing prospective, there are a lot of variables to try to control while testing for the pres-

ence of sharing. Some obvious sources of variability in the following experiments include:

• General purpose operating systems provide no guarantee of what is running at any

given time.

• We have some expectations about the hardware and how the cache works etc; but,

without special hardware we are unable to actually see what is going on inside our

test systems.

• Other things can be happening in hardware/memory, i.e. device interrupts, DMA etc

that may pollute the cache or flood the memory bus.

Some of these variables are not things we can easily control in a simple test, so we hope to

minimize anomalies by running larger data sets. This test is intended to provide an indicator

that sharing is occurring, and a rough estimate of the relative performance when sharing is

involved in some simple test cases.

5.1.2 The Integer Counter Example

One of the simplest examples used to evaluate other clustered object systems and other

concurrent systems has been an integer counter [3,28]. An integer counter is a class with a

single integer field. The class has an interface which consists of three methods:

5.1 Evaluating Assumptions 57

inc add one to the this counter

dec subtract one from this counter

value get the current value of this counter

In C++ the integer counter interface would have a definition like this:

class IntegerCounter{
public:

virtual void inc() =0;
virtual void dec() =0;
virtual int value() =0;

};

One can imagine a class like this being used to count frequent events. The design

of these experiments needs to ensure events are frequent enough on each processor that

they create a noticeable amount of overhead from sharing. On our simple test system, we

intentionally make these events very frequent; in part, that is because our test system only

has two processors. On a system with more processors there are more potential streams of

execution that can contend any one cache line, and cache synchronization can cause more

overhead.

5.1.3 Experiment 1: Creating Contended Counters

This first experiment will test the integer counter in different configurations. We first try

to validate that sharing is indeed occurring in the system. Then, we validate whether some

of the techniques used in the clustered object library are in fact able to reduce the sharing

experienced and therefore the overhead induced by sharing. In short, this experiment aims

to show that sharing does happen, and that the techniques employed in the clustered object

system do in fact reduce sharing.

5.1 Evaluating Assumptions 58

5.1.4 Hardware Setup

The machine that this test was run on was a dual processor X86 based machine. Some

details about the machine were collected with the CPU-Z system information tool. More

details about this machine can be found in Appendix A, but briefly the machine has:

CPUs 2 AMD Athlon MP 2400+ processors,

Memory 1GB (2 x 512MB) of 133MHz DDR RAM

Cache each processor has 64kB of L1 data cache, and 256kB of L2 cache, both with 64-

byte cache lines.

5.1.5 Software Setup

Our machine was running SUSE Linux 10.0, with an underlying Linux kernel version of

2.6.13SMP. This test did not use pthreads or the clustered object library, just Linux pro-

cesses. The testing processes were run in single user mode, and the subtleties of this testing

scenario are provided in Appendix C. After the initial process is started, child processes are

created via the Linux clone1 system call, with the VM CLONE option enabled to set the

child share the parent’s memory space.

5.1.6 Procedure

Four different configurations of the integer counter were tested, each designed to show

different characteristics. Cases 1, and 2 implement the counters as if there were no overhead

caused by sharing. Cases 3 and 4 partition the counters to see if that reduces sharing. All

the code for these can be found in Appendix B. The two simplest configurations are as

follows and are illustrated in Figure 5.1:

Case 1: one SimpleIntegerCounter This test is comprised of a single SimpleIntegerCounter

being shared by two processors. A SimpleIntegerCounter is a class that just has a
1The Linux clone system call creates a new child process. With the VM CLONE flag sent, the child

process will be setup to use the same memory space as the parent except with a different runtime stack.

5.1 Evaluating Assumptions 59

Single Simple Integer Counter

P1 P2

Two Simple Integer Counters

P1 P2

contiguous
cache lines

contiguous
cache lines

Figure 5.1. Two configurations of the SimpleIntegerCounter and processors P1 and P2
accessing them. Each processor accesses the internal int field through an inc() method.

single int field as its only member. The inc, dec, and value methods atomically in-

crement, decrement, and return a copy of the integer field respectively. In this case

we expect to see sharing, and therefore the inherent penalty associated with reduced

CPU utilization.

Case 2: two SimpleIntegerCounter instances This test comprises two separate instances

of a SimpleIntegerCounter. We ensure that they are not close to each other in memory

(at least a cache line apart). A processor is assigned to access each simple integer

counter. When we make a value call on either of these integer counters, we must

return the sum of both integer counters’ int fields. We expect no sharing in this case,

and therefore no performance penalty.

The obvious problem with a single SimpleIntegerCounter in Case 1 is that the internal

int field is being shared. Cases 3 and 4 avoid this sharing by using more than one int field

internally, without having to create more than one instance of the SimpleIntegerCounter as

in Case 2. We present two different configurations as shown in Figure 5.2:

Case 3: one ArrayIntegerCounter This test comprises an array based integer counter. The

5.1 Evaluating Assumptions 60

Padded Array Integer CounterArray Integer Counter

P1 P2 P1 P2

contiguous
cache lines

contiguous
cache lines

Figure 5.2. The ArrayIntegerCounter, PaddedArrayIntegerCounter and processors P1 and
P2 accessing them. Each processor accesses the internal integer array through an inc()
method.

counter has an int array with one element for each processor. Like Case 2, when the

value method is called, we must return the sum of the array elements. We expect to

see no real sharing, but since the array elements probably are on the same cache line,

we expect to see false sharing, and therefore poor performance.

Case 4: one PaddedArrayIntegerCounter This test comprises an array based integer counter

like Case 3; however, each element in the array is padded, so that each element fills

one cache line. Since each element has its own cache line, there is no false sharing

between elements. As with the other two integer counters, when the value method

is called, we must sum all the padded elements to return the total value. We expect

to see no sharing (real or false) in this case, and therefore performance similar to the

two separate SimpleIntegerCounter instances of Case 2 in Figure 5.1.

5.1 Evaluating Assumptions 61

Average cycles per inc call
Case 1: One integer counter 453.65
Case 2: Two separate integer counters 46.35
Case 3: Array integer counter 341.72
Case 4: Padded array integer counter 48.05

Table 5.1. Results of simple sharing test cases mentioned in Section 5.1.6

5.1.7 Quantifying Results

In this first test, each of the integer counters is exposed to the same number of invocations

of the inc method from two processors concurrently. The total number of cycles to satisfy

all the requests is what we consider to be the performance. The test is run a number of

times to obtain an average performance for each integer counter. Appendix B has more

details and the code for this test. Finally, we divide the average performance by the number

of requests to the inc method to find the average number of cycles per request. Cycles per

request is our metric, in keeping with previous work [3, 15].

This test is susceptible to the sources of variability outlined in Section 5.1.1. To try and

mitigate variability, all tests are run in single user mode, which has been shown to be far

less variable (Appendix C); however, other sources of error are introduced by unintended

sharing. In section 5.1.9 we discuss these problems and how they were solved.

5.1.8 Results

Table 5.1 shows the results from this first test. Figure 5.3 shows a graph of those results

indicating the average runtime for each of the test cases used in this simple evaluation. The

runtimes themselves are not as important as the relative differences between them, as this

shows just how much overhead sharing can cause.

As expected, the two SimpleIntegerCounters in Case 2 have no memory in common,

hence they experience no sharing and therefore perform very well. It is interesting to note

that the PaddedArrayIntegerCounter in Case 4 performs just as well, even though it is a

5.1 Evaluating Assumptions 62

two separate integer
counters

one integer counter array integer counter padded array integer
counter

0

50

100

150

200

250

300

350

400

450

500

46.35

453.65

341.72

48.05

Integer Counter Performace
av

er
ag

e
cy

cl
es

 p
er

 in
c(

)

Figure 5.3. Average runtime results of the four integer counters listed in Section 5.1.6,
Table 5.1.

single object. The counters which had real and false sharing, however, were almost an

order of magnitude slower. These results indicate that there is in fact significant over-

head introduced by sharing on an X86 based system; and that our assumptions are correct.

Specifically, these results show that by restructuring objects in a cache conscious way, we

can achieve a significant performance benefit over a poorly structured object.

5.1.9 Lessons Learned: Unanticipated Sharing

Some anecdotal evidence shows that there is a benefit obtained by using clustered objects;

even when dealing with an example on this small of a scale. This is a snippet of code from

the test program:

test(new SimpleIntegerCounter(),new SimpleIntegerCounter());

5.1 Evaluating Assumptions 63

This code’s intent was to create the two separate SimpleIntegerCounters for Case 1. But,

without custom memory allocation the two back to back calls to malloc triggered by these

new statements may place the two SimpleIntegerCounters back to back in memory. This

had the unintended side effect of leaving both integer counters on the same cache line, and

therefore causing false sharing.

Before it was fixed, a simple mistake like this caused an increased overhead similar

to Case 3’s false sharing on Case 2. If the code were not under such high demand, it is

unlikely that this would have ever been noticed, while it continued to take a small toll on

the system.

Of course, the fix is simply to make sure the two do not end up on the same cache line:

IntegerCounter* c1 = new SimpleIntegerCounter();
malloc(CACHE_LINE_SIZE);
IntegerCounter* c2 = new SimpleIntegerCounter();
test(c1,c2);

It is important to note however that a simple constructor like Case 4’s that allocates

an 8 processor padded array has a hidden problem. The PaddedArrayIntegerCounter has

a member pointer, val, which points to the dynamically created padded array. malloc is

first called during the object construction and the val pointer is left in that memory, if we

immediately call malloc again to create the padded integer array, in some cases that leaves

the object’s data (the val pointer) and the first element of the padded array in the same

cache line and hence false sharing happens between the val pointer that all the processors

use and the first padded element that only the first processor uses.

IntegerCounter::IntegerCounter(){
_vals = (volatile int*) malloc(CACHE_LINE_SIZE*8);

}

Again, to fix this we must separate the object’s data and the array:

IntegerCounter::IntegerCounter(){
malloc(CACHE_LINE_SIZE);
_vals = (volatile int*) malloc(CACHE_LINE_SIZE*8);

}

5.2 Performance of SCOPE 64

C1 C2 C3 Padded Array
contiguous
cache lines

contiguous
cache lines

Original allocation pattern of counters C1,C2,C3:

Manually adjusted allocation pattern:

Padded Array C3C1 C2

False sharingFalse sharing

Figure 5.4. The natural layout of the integer counters across cache lines, then the man-
ually corrected versions. Notice how without adjustment the counters can end up on the
same cache line, and therefore introduce sharing.

Figure 5.4 illustrates what is happening in the above code. It is not trivial for a pro-

grammer to take sharing into consideration when writing code. In the above examples,

SCOPE would have automatically provided padded allocators thus alleviating the burden

on the programmer to get these kinds of intricate details correct.

5.2 Performance of SCOPE

Now that we have shown some evidence that there can be some overhead caused by sharing

in a system, we present an initial performance analysis of SCOPE to see if it can reduce the

cost of sharing. This analysis is not intended as a detailed performance analysis; rather, a

simple verification that SCOPE works and provides benefit.

For this set of experiments SCOPE is used as well as some of the counters from the

previous sections; however, now the concurrency is provided by pthreads instead of Linux

processes. The counters used from the previous sections are fundamentally the same, but

differ in implementation from the previous sections to accommodate the new model. The

counters should experience sharing as in the last sections, but the exact performance char-

5.2 Performance of SCOPE 65

acteristics might be different. Pthreads is the de facto standard for Linux concurrent pro-

gramming, so it is a reasonable model to test with.

The test framework used in these test cases is more advanced than the tests in Section

5.1.6. Pthreads provides extra synchronization constructs which we take advantage of to

produce higher concurrency. This is accomplished by using thread barriers to align thread

execution of the critical sections across each run of the test case. Because of this, the

numbers produced by these test cases are more regular.

5.2.1 Experiment 2: Counting Clustered Objects

In this experiment we reexamine 3 of the 4 integer counters from 5.1.6. We do not include

the two separate IntegerCounters case from above because it does not present a single

interface to the client, and we have shown that our PaddedArrayIntegerCounter performs

just as well.

5.2.2 Setup

The hardware setup for this experiment is exactly the same as in 5.1.4, the software setup is

similar to that in 5.1.5 except we are now using pthreads instead of the clone() system

call.

5.2.3 Procedure

In this experiment six different IntegerCounter test cases are examined:

Cases 1, 2 and 3: are one SimpleIntegerCounter, one ArrayIntegerCounter, and one PaddedAr-

rayIntegerCounter. Cases 1-3 are re-implementations of the counters from Sec-

tion 5.1.6 redesigned to work under pthreads. So that the tests can determine which

processor they are running on, we allow them to use the MYVP macro from SCOPE.

This macro provides the number of the current processor that the thread is running

on. This is what is used to index into the per processor arrays.

5.2 Performance of SCOPE 66

Case 4: is one SharedIntegerCounter with a special DREF. This test case has a SharedInte-

gerCounter clustered object; however, we do not use the clustered object dereference

mechanism, rather the regular C++ mechanism. The clustered object version of the

IntegerCounter is more complex because of inheritance and the class is much larger

than that of the previous cases. A replicated clustered object could not work like this,

but we can still directly reference a clustered object with a single representative. We

expect this to perform poorly as it will have the effects from sharing, and the virtual

dispatch.

Case 5: is one SharedIntegerCounter clustered object. This test case has a simple non-

replicated clustered object. Unlike Case 4, we use the full SCOPE dereferencing

mechanism. This dereferencing consists of deciding which VP the dereference takes

place on, finding that VP’s table, calculating an offset into that table, getting a new

address from that table location and going to that address. We expect this to be the

slowest of all the counters, as it has the sharing effects and the overhead from the

SCOPE dereference.

Case 6: is one ReplicatedIntegerCounter clustered object. This test case has a replicated

clustered object. In this case there is one replica per processor. The int field that

we are incrementing is in these replicas. When an inc() operation takes place

the int on the local replica is incremented. When a value operation is requested

the ReplicatedIntegerCounter’s root provides a linked list of all the replicas that we

can traverse to find the summation of each processor’s int values. We expect the

ReplicatedIntegerCounter to perform very well as there is no sharing.

The experiment is the same as that of Section 5.1.7: the IntegerCounters are subjected to

a number of concurrent inc() calls and the time taken to service these calls is measured.

An average is taken across several runs to give us the average number of cycles per request.

We also add one special run of the test on only one thread to find out the underlying cost of

the counters regardless of the effects of sharing.

5.2 Performance of SCOPE 67

Average cycles per inc call and percent overhead of sharing
Case 1: One IntegerCounter 681.29 86.7%
Case 2: ArrayIntegerCounter 548.05 79.1%
Case 3: PaddedArrayIntegerCounter 92.10 3.8%
Case 4: CO style IntegerCounter 749.50 90.8%
Case 5: SharedIntegerCounter 885.44 88.8%
Case 6: ReplicatedIntegerCounter 100.11 < 1.0%

Table 5.2. The results from the 6 test cases mentioned in Section 5.2.3

5.2.4 Results

Table 5.2 presents the results obtained for the second experiment, and Figure 5.5 summa-

rizes the numbers from Table 5.2 in a graphical form.

5.2.5 Analysis

The results from the first three test cases are (as expected) similar to the first experiment.

The sharing and false sharing in Case 1 and 2 causes large slowdowns. Case 3 mitigates the

sharing and hence does not experience the same slowdowns. Case 4 exhibits the sharing

seen in Case 1 and 2, but still is 15% faster than a clustered object using the dereference

mechanism; however, Case 4 is 10% slower than Case 1 where we used the simpler class.

Case 5 exhibits the same sharing as Case 1, 2 and 3, but also on top of the sharing Case 5

is slowed further by the more complex dereference mechanism of SCOPE. Case 6 exhibits

no sharing, as expected for a fully replicated clustered object. The performance is only

slightly worse (9%) than that of the PaddedArrayIntegerCounter. The difference is due to

the different dereference system and differences in the classes.

The second set of tests shown in Figure 5.6 reveals only a small difference between each

of the methods when there was no sharing present. The difference between the clustered

object style counter and replicated clustered object is relatively small, 20 cycles. We can

attribute this difference to our SCOPE lookup mechanism.

5.2 Performance of SCOPE 68

1: Integer
Counter

2: Array In-
teger

3: Padded Ar-
ray Integer
Counter

4: CO style In-
teger Counter

5: Shared In-
teger Counter
Clustered Ob-
ject

6: Replicated
Integer Counter
Clustered Ob-
ject

0

100

200

300

400

500

600

700

800

900

IntegerCounter Performance

Case

A
ve

ra
ge

 c
yc

le
s

pe
r r

eq
ue

st

Figure 5.5. Average runtime results of the six IntegerCounters listed in Section 5.2.3, Ta-
ble 5.2.

5.2 Performance of SCOPE 69

One Inte-
gerCounter

 Array integer
counter

Padded Array
Inte-
gerCounter

CO-style In-
tegerCounter

Shared Inte-
gerCounter
clustered ob-

Replicated In-
tegerCounter
clustered ob-

0

100

200

300

400

500

600

700

800

900

Baseline tests

Without Sharing
With Sharing

Case

A
ve

ra
ge

 C
yc

le
s

pe
r R

eq
ue

st

Figure 5.6. Average runtime results of the six IntegerCounters listed in Section 5.2.3 run-
ning on one processor. This effectively eliminates sharing.

5.3 Reproduction of Benefits 70

In terms of performance, we believe this shows that a user-level library can indeed

provide a performance increase by maximizing locality in this simple counter example.

5.3 Reproduction of Benefits

Section 2.3 lists the benefits of using clustered objects in a system. Table 2.1 also provides

a summary of these benefits.

From a developer’s perspective, clustered objects are supposed to reduce the use of ad

hoc mechanisms for increasing locality. Earlier in this chapter we introduced a PaddedAr-

rayIntegerCounter. This counter is an excellent example of a data structure that is struc-

tured correctly to reduce sharing, but was done so in an ad hoc manner. The Replicated-

IntegerCounter that was also introduced earlier is one possible implementation of the data

structure as a clustered object. Figure 5.7 shows the PaddedArrayIntegerCounter’s code,

and Figure 5.8 shows the clustered object equivalent. There are several ad hoc mechanisms

used in the PaddedArrayIntegerCounter. On lines 12 and 14 of Figure 5.7, when the array

is allocated, the entries have to be padded to avoid false sharing. On line 19 of Figure 5.7

the base pointer has to be multiplied by the number of the current processor and the cache

line size, and a similar multiplication has to happen to increment or decrement on line 23.

In the ReplicatedIntegerCounter from SCOPE in Figure 5.8, there one integer per rep,

and it is accessed just as a regular integer would be. None of those ad hoc mechanisms listed

above are needed. When creating the integer storage, no special treatment is necessary, the

padding is automatic. When iterating across the integers to get the total value, a simple for

each rep loop is used. When incrementing or decrementing, the local value is used.

In a data structure as simple as a counter, the complexity introduced by these ad hoc

mechanisms might be bearable, but as the complexity of the data structure increases, so

does the complexity of the locality management. Just as in previous kernel-level implemen-

tations, SCOPE removes the need for ad hoc mechanisms that provide locality; but, how

does SCOPE measure up to the K42 implementation of clustered objects? The following

5.3 Reproduction of Benefits 71

1 class PaddedArrayIntegerCounter: public IntegerCounter {
2 private:
3 volatile int* _vals;
4 public:
5 PaddedArrayIntegerCounter();
6 virtual void value(int &count,int MYVP);
7 virtual void inc(int MYVP);
8 virtual void dec(int MYVP);
9 };

10
11 PaddedArrayIntegerCounter::PaddedArrayIntegerCounter(){
12 malloc(CACHE_LINE_SIZE);
13 _vals = (volatile int*)
14 malloc(CACHE_LINE_SIZE*NUM_OF_PROCESSORS);
15 }
16
17 void PaddedArrayIntegerCounter::value(int &count,int MYVP){
18 for(int i = 0; i < NUM_OF_PROCESSORS; i++)
19 count += (int) _vals+(i*CACHE_LINE_SIZE);
20 }
21
22 void PaddedArrayIntegerCounter ::inc(int MYVP){
23 FetchAndAddintSynced(_vals+(MYVP*CACHE_LINE_SIZE),1);}
24
25 void PaddedArrayIntegerCounter ::dec(int MYVP){
26 FetchAndAddintSynced(_vals+(MYVP*CACHE_LINE_SIZE),-1);}

Figure 5.7. The PaddedArrayIntegerCounter implementation. In this example MYVP re-
trieves the number of the current processor.

5.3 Reproduction of Benefits 72

1 class ReplicatedIntegerCounter : public IntegerCounter {
2 volatile int _val;
3 ReplicatedIntegerCounter();
4 ˜ReplicatedIntegerCounter() { }
5 public:
6 static CORC Create(IntegerCounterRef &ref);
7 virtual CORC value(sval &count);
8 virtual CORC inc();
9 virtual CORC dec();

10 };
11 ReplicatedIntegerCounter::ReplicatedIntegerCounter()
12 :IntegerCounter(),_val(0) {}
13 CORC ReplicatedIntegerCounter::Create(IntegerCounterRef &ref) {
14 CORef r;
15 Root::Create(r);
16 ref = (IntegerCounterRef)r;
17 return SUCCESS;
18 }
19 CORC ReplicatedIntegerCounter::value(sval &count) {
20 ReplicatedIntegerCounter* current = NULL;
21 count = 0;
22 for (void* curr = COGLOBAL(nextRep(NULL,(CObjRep*&)current));
23 curr;curr = COGLOBAL(nextRep(curr,(CObjRep*&)current))) {
24 count+=current->_val;}
25 return SUCCESS;
26 }
27 CORC ReplicatedIntegerCounter ::inc(){
28 FetchAndAddintSynced(&_val,1);
29 return SUCCESS;
30 }
31 CORC ReplicatedIntegerCounter ::dec() {
32 FetchAndAddSvalSynced(&_val,-1);
33 return SUCCESS;
34 }

Figure 5.8. The ReplicatedIntegerCounter implementation. In this example the MYVP
macro retrieves the number of the current processor.

5.3 Reproduction of Benefits 73

sections evaluate the original benefits listed in Section 2.3, and evaluate our implementation

on the basis of this list.

5.3.1 Programming Benefits

An evaluation of the benefits to the programmer:

Ease of use encouraged by:

1. Reduction in the use of ad hoc mechanisms for increasing locality: This is

inherent in the model, and therefore in SCOPE. Our simple integer counter

above shows a fully distributed version that is simple to understand and use.

2. For the programmer, accessing a clustered object is no harder than a regular ob-

ject access: We have changed the clustered object access mechanisms. As ex-

plained in Section 4.2.2 we have added two macros. We believe this is no harder

for the programmer than using the original DREF macro. In Section 6.1.3 we

describe mechanisms that might allows us to make this system even easier.

3. Assisted destruction is not implemented, however the in Section 6.1.1.2 ex-

plains how we plan to do this.

4. Incremental optimizations: This is inherent in the clustered object model and

therefore in SCOPE.

5. No existence locks: is a feature of assisted destruction.

Linguistic features supported:

1. Strong interfaces: This is inherent in the clustered object model and therefore

in SCOPE.

2. Type safety: The new DREF macro is type safe, therefore SCOPE maintains

type safety.

3. Oblivious structure: This is inherent in the clustered object model and therefore

in SCOPE.

5.3 Reproduction of Benefits 74

Most of the programming benefits of clustered objects have been maintained in the

implementation of SCOPE, with plans to implement the rest.

5.3.2 Utilization

Besides the overall performance analyzed earlier in this chapter, SCOPE’s support of uti-

lization specific features:

enables utilization by:

1. Structure facilitates reduced sharing: This is inherent in the clustered object

model and therefore in SCOPE.

2. Dynamic adaptation: is not yet implemented. Section 6.1.1.4 of the future work

explains how we would like to implement this.

3. Different implementations: This is inherent in the model, and therefore in

SCOPE.

aids efficiency by:

1. Minimal overhead: Originally, dereferencing a clustered object took 1 extra in-

struction. We show above in Section 5.2.4 that the SCOPE dereference mech-

anism takes approximately 20 cycles. This does introduce more overhead, but

we also show that even with this overhead, SCOPE is much faster because of

the increased locality. Further work could be applied to creating a faster DREF

mechanism.

2. Lazy creation: is supported by the trampoline mechanism in SCOPE.

Most of the utilization features of clustered objects have been maintained in the imple-

mentation of SCOPE, with plans to implement the rest. A summary of each of the benefits

is listed in Table 5.3.

5.4 Summary 75

Benefit status in SCOPE
Programming

ease of use reduce ad hoc mechanisms supported in SCOPE
easy access
easy destruction not implemented
no existence locks

language features promotes optimization supported in SCOPE
strong interface
type safe
oblivious clients

Utilization
enables utilization dynamic adaptation not implemented

multiple implementation
easy incremental optimization supported in SCOPE

increases efficiency no existence locks not implemented
minimal access overhead not as good as K42
lazy creation of reps supported in SCOPE

Table 5.3. Summary of the Benefits provided by SCOPE

5.4 Summary

We have shown that sharing can be a problem for user-level programs, and that a simple

restructuring of the data can avoid the sharing problem. We have also shown that in a

simple example SCOPE can remove the effects of sharing, just as in a manually structured

object. Finally we compare the benefits established by previous clustered object systems,

and show that SCOPE has accomplished most of them, and those that were not, could be

implemented in future versions of the prototype.

Chapter 6

Future Work and Conclusions

This chapter concludes the thesis by discussing work up to this point, lessons learned, and

work that could be done in the future.

SCOPE has provided a fruitful platform to continue research. Further work can happen

in two areas: furthering the development of SCOPE and furthering the implementation

strategies of clustered objects themselves.

6.1 Future Work

This section features two areas of possible future research. First, we consider some ad-

vanced features for SCOPE then we consider some improvements to the current imple-

mentation of SCOPE. Finally, we describe how one might be able to use aspect-oriented

programming to enhance the clustered objects user’s experience.

6.1.1 Reproduction of Advanced Features

K42’s Clustered Object runtime is relatively mature, and has had time to evolve some ad-

vanced features. In the interest of the SCOPE implementation time line, these features

were not implemented, but could be in the future. These features include things like clus-

tered objects’ dynamic monitoring system, garbage collection, RCU, and dynamic update

systems. Beyond K42’s features, the portability of SCOPE could be demonstrated with a

Microsoft Windows version.

6.1 Future Work 77

6.1.1.1 KORE

The K42 Objects Remote Environment (KORE), is a system designed to provide dynamic

information about clustered objects in K42. KORE loads a server into the clustered object’s

runtime environment, then a KORE client or GDB1 client is able to connect to that server

and collect information about the system.

KORE can do things like list clustered objects in the system, and monitor events and

make traces. KORE’s client is scriptable, so users can write their own scripts to mine

runtime information from the system.

The KORE client should not need to be changed to be work with SCOPE, and the

most of the original KORE server implementation should work with. Interesting questions

include whether we can reduce KORE’s overhead by reducing the attendant kernel to user-

level communication overhead.

6.1.1.2 Garbage Collection

K42’s Clustered Objects has what they call garbage collection. This is not garbage collec-

tion in the traditional sense of automatic reclamation of unused objects, but rather a semi

automatic cleanup of objects that have been signaled for destruction.

K42’s garbage collection is what allows them to make the existence grantees on clus-

tered objects. Any reference to a clustered object is guaranteed to point to an active clus-

tered object. Even after the destruction of a clustered object is signaled, it is kept active

until all threads in the system are no longer able to access it. It does this in the same way

that the RCU technique mentioned is Section 1.3.3 makes its guarantees about writing data

with quiescent periods: it waits until all threads in the system are no longer able to use

their current reference. In K42 they have a policy of having no long living threads. This

means that all threads should terminate in a reasonable amount of time. Since operating

systems are request driven, this plays out as a single short lived thread per-request. So, after

1GDB is a commonly used open source debugger: http://www.gnu.org/software/gdb/

6.1 Future Work 78

a clustered object’s destruction is signaled, the system just waits until all the requests that

were active at the time finish, then destroys the clustered object. Because clustered objects

are always guaranteed to exist, they have the desirable property of not needing existence

locking. This is considered one of the nicer benefits of clustered objects.

The portability events we introduce in Section 4.2.2 will make implementing garbage

collection simple; however, whether the expectation of user-level programs not having any

long living threads is reasonable is yet to be seen.

6.1.1.3 RCU

The RCU technique mention in Section 1.3.3 is used pervasively in K42. Clustered objects

try to reduce sharing, but it may be possible that a programmer needs a shared piece of data

in a clustered object. RCU could be used as a lock-free method of accessing data that must

be shared. It seems reasonable for SCOPE to provide this functionality. It seems like RCU’s

quiescent state detection requires OS integration, it will prove to be an interesting challenge

to move this methodology into user-level. Since the garbage collection mentioned above

uses a RCU style technique, it may be able to be extended to provide full RCU support.

6.1.1.4 Dynamic Update

K42’s Clustered Objects support dynamic update, replacing a clustered object with a dif-

ferent version of the same clustered object. To support this, K42 has a set of factory objects

for creating and tracking clustered objects. Once again, the portability events introduced in

Section 4.2.2 will allow SCOPE to easily accommodate dynamic updates.

6.1.1.5 Portability

In Section 4.2.3 we talk about how the portability events will allow SCOPE to work in

other systems. It could prove interesting to try moving SCOPE to the Microsoft Windows

platform, and then revalidate the performance and portability of SCOPE.

6.1 Future Work 79

6.1.2 SCOPE Improvements

After becoming well acquainted with SCOPE’s internal structure, we found several flaws

that could be fixed in a simple redesign. At the moment the lookup tables and the COSMgr

are very tightly integrated. There is no need for this. The method for accessing external

resources on different platforms is ad hoc, and does not seem to scale as more interfaces to

the underlying system are added. The internal naming conventions are not always observed.

There is no documentation about the system.

SCOPE may also have a dependence on GCC 3.42. GCC 3.4 is used exclusively in

K42. For widespread adoption, it would be necessary to support newer versions of GCC

and even other compilers.

6.1.3 Improving the Client experience with AOP

Aspect Oriented Programming (AOP) provides mechanisms for concretely implementing

cross-cutting concerns in a modular fashion. For our purposes a cross-cutting concern is

a feature that is not easily implemented in one module in the system. One example of a

cross-cutting concern in SCOPE could be the clustered object creation code, when creating

a clustered object, code from all around the system is called in a predetermined way.

One of the controversial properties of AOP that may be useful to us is obliviousness.

That is, that when an aspect acts on some part of the system, the original code does not look

any different. One drawback of clustered objects is that without compiler support, a clus-

tered object access has to be surrounded in the DREF macro as mentioned in Section 4.2.1.

This means that the programmer has to be aware that it is a clustered object that is being

called, not a regular object. AOP could be used to make this more transparent by applying

the DREF macro automatically to clustered object calls, therefore making them look like

regular object accesses to the programmer. Making clustered objects even easier to call

2GCC is a popular open source compiler: http://gcc.gnu.org/

6.2 Conclusions 80

could help them become more pervasive in programs, which is one of the original goal of

clustered objects and this work.

Automatically applying the DREF macro may have even more advantages, in that the

added DREF calls could be customized for the calling clustered object. If for example,

there was a long lived clustered object like the COSMgr that will never need to be garbage

collected, or if a clustered object that didn’t use a RCU facility, the necessary tracking

information could not be collected. This may have the effect of creating faster access times

for clustered objects that opt out of advanced features.

One problem with this (and AOP in general) is that the client program would have to

first be compiled with an AOP compiler before being regularly compiled; however, it may

be possible to prepackage an AOP compiler that is setup to just process the clustered object

aspects like a simple preprocessor.

6.2 Conclusions

The evolution of OSes to modern day systems with SMP support has had to change how

concurrency is dealt with in order to provide better CPU utilization. One system that

evolved from the need for better SMP utilization was K42’s Clustered Objects facility.

Clustered Objects’ primary goal was to help the programmer maximize locality in a struc-

tured manner. The clustered objects model offer improved scalability with respect to the

problems faced by modern OSes, but the problems caused by sharing do not just affect

OSes, they affect all software.

SCOPE was created to bring the K42 implementation of the clustered objects model

into the Linux user-level. Porting the K42 Clustered Objects facility is not a simple task,

there were many dependencies on the underlying OS, including the object translation sys-

tem, the IPC system, and the memory allocation system.

To help increase the portability of SCOPE we introduce the notion of a portability event.

Portability events allow us to customize the user-level runtime environment to be able to

6.2 Conclusions 81

provide the object translation support that clustered objects needs to function. With the

addition of the portability event, we can replace the K42 dereference functionality with our

own which allows us to produce a processor specific table lookup. This macro has a higher

overhead than the original, but produces the same result, a clustered object dereference.

The implementation of the support for the new portability events was successful, in that

we were able to produce a clustered object lookup at runtime, and reproduce much of the

functionally of the Clustered Objects facility in K42.

In our evaluation of SCOPE, we first showed that sharing can be a problem for user-

level programs by introducing a simple integer counter. We established that without some

extra mechanisms beyond what a programmer might regularly do, a simple counter can

experience significant sharing overheads even on a dual processor machine; however, a

systematic manual restructuring of the data can avoid the sharing problem and increase

utilization of the system’s resources like the CPUs.

After we established sharing can be a problem for our test situation, we then show

that in a simple example SCOPE can remove the effects of sharing, just as in a manually

restructured structured object. Then we compare the performance of SCOPE to the manual

restructuring, and find that the overhead introduced by SCOPE is small, especially relative

to the slowdowns experienced from the effects of sharing. Finally, we compare the benefits

established by previous implementations of clustered object systems, and show that SCOPE

has most of them, and that the missing benefits could be implemented in later versions of

SCOPE.

The question addressed in this work is whether, in the face of the system level complex-

ities introduced by true concurrency, a user-level abstraction could be shown to increase uti-

lization without customization of an underlying system? We believe we have demonstrated

the answer is yes.

The results of this thesis show that even though SCOPE does not rely on the underlying

operating system for anything besides its basic services, SCOPE is able to help a program-

mer write truly concurrent software by easing the need to dwell on the lowest details of the

6.2 Conclusions 82

system and by systematically maximizing hardware utilization.

Bibliography

[1] AMD, “Welcome to AMD multi-core technology,” 2005. [Online]. Available:
http://multicore.amd.com/Global/

[2] T. E. Anderson, E. D. Lazowska, and H. M. Levy, “The performance implications
of thread management alternatives for shared-memory multiprocessors,” in SIGMET-
RICS ’89: Proceedings of the 1989 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems. New York, NY, USA: ACM Press,
1989, pp. 49–60.

[3] J. Appavoo, “Clustered objects: Initial design, implementation and evaluation,” Mas-
ter’s thesis, University of Toronto, 1998.

[4] ——, “Clustered objects,” Ph.D. dissertation, University of Toronto, 2005.

[5] ——, “Phone interviews with Jonathan Appavoo,” September-December 2005.

[6] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn, O. Krieger, M. Ostrowski,
B. Rosenburg, R. W. Wisniewski, and J. Xenidis, “K42 overview,” IBM TJ Watson
Research, Tech. Rep., 2002.

[7] G. Barnes, “A method for implementing lock-free shared-data structures,” in SPAA
’93: Proceedings of the fifth annual ACM symposium on Parallel algorithms and
architectures. New York, NY, USA: ACM Press, 1993, pp. 261–270.

[8] A. B. Bondi, “Characteristics of scalability and their impact on performance,” in
WOSP ’00: Proceedings of the 2nd international workshop on Software and per-
formance. New York, NY, USA: ACM Press, 2000, pp. 195–203.

[9] R. Bryant, J. Hawkes, and J. Steiner, “Scaling Linux to the extreme: from 64 to 512
processors,” in Ottawa Linux Symposium, 2004.

[10] M. C. Daniel P. Bovet, Understanding the Linux Kernel, Second Edition, A. Oram,
Ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2002.

[11] E. W. Dijkstra, “Cooperating sequential processes,” Technological University Eind-
hoven, Tech. Rep., 1965.

[12] ——, “The structure of ”THE”-multiprogramming system,” Comm.ACM, vol. 11,
no. 5, pp. 341–346, 1968.

http://multicore.amd.com/Global/

Bibliography 84

[13] S. L. Gaede, “Perspectives on the SPEC SDET benchmarks,” January 1999. [Online].
Available: http://www.spec.org/osg/sdm91/sdet/index.html

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Abstraction and
reuse of object-oriented design,” Lecture Notes in Computer Science, vol. 707, pp.
406–431, 1993. [Online]. Available: citeseer.ist.psu.edu/gamma93design.html

[15] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm, “Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system,” in OSDI ’99:
Proceedings of the third symposium on Operating systems design and implementation.
Berkeley, CA, USA: USENIX Association, 1999, pp. 87–100.

[16] T. Harris and K. Fraser, “Language support for lightweight transactions,” in OOPSLA
’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications. New York, NY, USA: ACM
Press, 2003, pp. 388–402.

[17] B. Henderson, “Linux loadable kernel module howto,” 2006. [Online]. Available:
http://tldp.org/HOWTO/Module-HOWTO/

[18] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13,
no. 1, pp. 124–149, 1991.

[19] IEEE, IEEE 1003.1c-1995: Information Technology — Portable Operating System
Interface (POSIX) - System Application Program Interface (API) Amendment 2:
Threads Extension (C Language). 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA: IEEE Computer Society Press, 1995. [Online]. Available:
http://www.ansi.org/

[20] M. C. T. Ivan Bowman, Saheem Siddiqi, “Concrete architecture of the linux kernel,”
1998.

[21] O. Krieger, M. Stumm, R. Unrau, and J. Hanna, “A fair fast scalable reader-writer
lock,” in Proceedings of the 1993 International Conference on Parallel Processing,
vol. II - Software. Boca Raton, FL: CRC Press, 1993, pp. II–201–II–204. [Online].
Available: citeseer.ist.psu.edu/krieger93fair.html

[22] P. E. McKenney, J. Slingwine, and P. Krueger, “Experience with an efficient parallel
kernel memory allocator,” Softw. Pract. Exper., vol. 31, no. 3, pp. 235–257, 2001.

[23] P. E. McKenney and J. D. Slingwine, “Read-Copy Update: Using execution history
to solve concurrency problems,” in Parallel and Distributed Computing and Systems,
Las Vegas, NV, October 1998, pp. 509–518.

[24] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65,

http://www.spec.org/osg/sdm91/sdet/index.html
citeseer.ist.psu.edu/gamma93design.html
http://tldp.org/HOWTO/Module-HOWTO/
http://www.ansi.org/
citeseer.ist.psu.edu/krieger93fair.html

Bibliography 85

1991.

[25] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm, “(de-)clustering objects for multi-
processor system software,” pp. 72–81, 1995.

[26] M. Shapiro, “Structure and encapsulation in distributed systems: the proxy principle,”
in Proceedings of the 6th Int. Conf. on Distributed Systems (ICDCS), Cambridge MA
(USA), May 1986, pp. 198–204.

[27] M. Shapiro, Y. Gourbant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot, “SOS: An
object-oriented operating system - assessment and perspectives,” Computing Systems,
vol. 2, no. 4, pp. 287–337, 1989.

[28] N. Shavit and D. Touitou, “Software Transactional Memory,” in Symposium on
Principles of Distributed Computing, 1995, pp. 204–213. [Online]. Available:
citeseer.ist.psu.edu/shavit95software.html

[29] A. Silberschatz and P. B. Galvin, Operating System Concepts. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.

[30] B. Smith, “The quest for general-purpose parallel computing,” Developing a computer
science agenda for high-performance computing, pp. 151–155, 1994.

[31] W. Stallings, Operating Systems Internals and Design Principles Third Edition.
Prentice Hall, 1997.

[32] D. A. Wheeler, “Program library howto,” 2003. [Online]. Available: http:
//www.tldp.org/HOWTO/Program-Library-HOWTO/

[33] G. Yilmaz and N. Erdogan, “Partitioned object models for distributed abstractions,” in
14th International Symp. on Computer and Information Sciences (ISCIS XIV). Ku-
sadasi, Turkey: IOS Press, 1999, pp. 1072–1074.

citeseer.ist.psu.edu/shavit95software.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/
http://www.tldp.org/HOWTO/Program-Library-HOWTO/

Appendix A

Test Machines

A.1 Dual Processor X86

This section has the output produced by the CPU-Z1 program. Table A.1 has the detailed

CPU information, Table A.2 the motherboard information, and Table A.3 the memory con-

figuration.

1http://www.cpuid.com/cpuz.php

A.1 Dual Processor X86 87

CPU#1 CPU #2
Name AMD Athlon MP AMD Athlon MP
Code Name Thoroughbred Thoroughbred
Specification AMD Athlon(tm) MP 2400+ AMD Athlon(tm) MP 2400+
Family / Model / Step-
ping

6 8 1 6 8 1

Extended Family /
Model

7 8 7 8

Package Socket A Socket A
Core Stepping B0 B0
Technology 0.13 um 0.13 um
Supported Instructions
Sets

MMX, Extended MMX,
3DNow!, Extended 3DNow!,
SSE

MMX, Extended MMX,
3DNow!, Extended 3DNow!,
SSE

CPU Clock Speed 2000.1 MHz 2000.1 MHz
Clock multiplier x 15.0 x 15.0
Front Side Bus Fre-
quency

133.3 MHz 133.3 MHz

Bus Speed 266.7 MHz 266.7 MHz
L1 Data Cache 64 KBytes, 2-way set associa-

tive, 64 Bytes line size
64 KBytes, 2-way set associa-
tive, 64 Bytes line size

L1 Instruction Cache 64 KBytes, 2-way set associa-
tive, 64 Bytes line size

64 KBytes, 2-way set associa-
tive, 64 Bytes line size

L2 Cache 256 KBytes, 16-way set associa-
tive, 64 Bytes line size

256 KBytes, 16-way set associa-
tive, 64 Bytes line size

L2 Speed 2000.1 MHz (Full) 2000.1 MHz (Full)
L2 Location On Chip On Chip
L2 Data Prefetch Logic yes yes
L2 Bus Width 64 bits 64 bits

Table A.1. CPU information for the test machine

A.1 Dual Processor X86 88

Motherboard manufacturer Gigabyte Technology Co., LTD
Motherboard model 7DPXDW-P, x.x

BIOS vendor Award Software International, Inc.
BIOS revision 6.00 PG

BIOS release date 04/25/2003
Chipset AMD AMD-762 rev. A0

Southbridge AMD AMD-768 rev. 05
Sensor chip Winbond W83627HF

Graphic Interface AGP
AGP Status enabled, rev. 2.0

AGP Data Transfer Rate 4x
AGP Max Rate 4x

AGP Side Band Addressing supported, enabled

Table A.2. Mainboard and chipset of the test machine

DRAM Type DDR-SDRAM
DRAM Size 1024 MBytes

DRAM Frequency 133.3 MHz
FSB:DRAM 1:1

CAS# Latency 2.0 clocks
RAS# to CAS# 3 clocks

RAS# Precharge 3 clocks
Cycle Time (TRAS) 6 clocks

Bank Cycle Time (TRC) 9 clocks
DRAM Idle Timer 8 clocks

of memory modules 2
Module 0 DDR PC2700 - 512 MBytes
Module 1 DDR PC2700 - 512 MBytes

Table A.3. Memory of the test machine

Appendix B

Integer Counters

B.1 The Integer Counter Interface

class IntegerCounter{
public:

virtual void inc(int MYVP) =0;
virtual int dec(int MYVP) =0;
virtual int value(int &count,int MYVP) =0;

};

These are the methods that all of our integer counters had. MYVP stands for my virtual pro-

cessor. Virtual processors are an abstraction used in K42 to represent processors. MYVP

is just an integer that is the number of the processor: 0 or 1 in the case of our first test.

B.2 Atomically Accessing an Int

1 inline void FetchAndAddintSynced(volatile int* datap, int val)
2 {
3 int oldData;
4 int rcode;
5
6 while (1) {
7 __asm__ __volatile__ (
8 "#fetchAndAdd
9 movl (%3), %1

10 add %1, %2
11 lock
12 cmpxchg %2, (%3)

B.3 The Simple Integer Counter 90

13 jz 1f
14 movl $0, %0
15 jmp 2f
16 1: movl $1, %0
17 2: # end fetchAndAdd"
18 : "=r" (rcode), "=&a" (oldData)
19 : "r" (val), "r" (datap)
20 : "memory");
21 if (rcode) return; /*oldData;*/
22 }
23 }

B.3 The Simple Integer Counter

1 class SimpleIntegerCounter: public IntegerCounter
2 {
3 private:
4 volatile int* _val;
5 public:
6 SimpleIntegerCounter();
7
8 virtual void value(int &count,int MYVP);
9

10 virtual void inc(int MYVP);
11
12 virtual void dec(int* MYVP);
13
14 };
15
16 SimpleIntegerCounter ::SimpleIntegerCounter(){
17 _val = (volatile int*) malloc(sizeof(int));
18 }
19
20 void
21 SimpleIntegerCounter::value(int &count,int MYVP){
22 count = *_val;
23 }
24
25 inline void
26 SimpleIntegerCounter ::inc(int MYVP){
27 FetchAndAddintSynced(_val,1);

B.4 Array Based Integer Counter 91

28 }
29
30 inline void
31 SimpleIntegerCounter ::dec(int MYVP){
32 FetchAndAddintSynced(_val,-1);
33 }

B.4 Array Based Integer Counter

1 class SimpleArrayIntegerCounter: public IntegerCounter
2 {
3 private:
4 volatile int* _vals;
5 public:
6 SimpleArrayIntegerCounter();
7
8 virtual void value(int &count,int MYVP);
9

10 virtual void inc(int MYVP);
11
12 virtual void dec(int MYVP);
13 };
14
15 SimpleArrayIntegerCounter::SimpleArrayIntegerCounter(){
16 malloc(CACHE_LINE_SIZE);//add a pad
17 _vals = (volatile int*)
18 malloc(sizeof(int)*NUM_OF_PROCESSORS);
19 }
20
21 void
22 SimpleArrayIntegerCounter::value(int &count,int MYVP){
23 for(int i = 0; i < NUM_OF_PROCESSORS; i++)
24 count += _vals[i];
25 }
26
27 inline void
28 SimpleArrayIntegerCounter ::inc(int MYVP){
29 FetchAndAddintSynced((_vals+MYVP),1);
30 }
31
32 inline void

B.5 Padded Array Based Integer Counter 92

33 SimpleArrayIntegerCounter ::dec(int MYVP){
34 FetchAndAddintSynced((_vals+MYVP),-1);
35 }

B.5 Padded Array Based Integer Counter

1 class SimplePaddedArrayIntegerCounter: public IntegerCounter
2 {
3 private:
4 volatile int* _vals;
5 public:
6 SimplePaddedArrayIntegerCounter();
7
8 virtual void value(int &count,int MYVP);
9

10 virtual void inc(int MYVP);
11
12 virtual void dec(int MYVP);
13
14
15 };
16 SimplePaddedArrayIntegerCounter::SimplePaddedArrayIntegerCounter(){
17 malloc(CACHE_LINE_SIZE);
18 _vals = (volatile int*)
19 malloc(CACHE_LINE_SIZE*NUM_OF_PROCESSORS);
20
21 }
22
23 void
24 SimplePaddedArrayIntegerCounter::value(int &count,int MYVP){
25 for(int i = 0; i < NUM_OF_PROCESSORS; i++)
26 count += (int) _vals+(i*CACHE_LINE_SIZE);
27 }
28
29 inline void
30 SimplePaddedArrayIntegerCounter ::inc(int MYVP){
31 FetchAndAddintSynced(_vals+MYVP,1);
32 }
33
34 inline void
35 SimplePaddedArrayIntegerCounter ::dec(int MYVP){

B.5 Padded Array Based Integer Counter 93

36 FetchAndAddintSynced(_vals+MYVP,-1);
37 }

In this particular example we set MYVP to be the processor number times the size of a

cache line to save the multiplication each time.

Appendix C

Single User Mode

A common practice in testing operating system components and other things that are very

sensitive to changes in the system is to run the test in Linux’s single user mode. Single user

mode allows a program to run on a very minimal system, where only the processes that are

necessary to maintain the system are running.

In our tests we want two processes to be running at the same time, while accessing

the same data. Any time that one processor spends servicing non-test processes throws off

the results because there is no longer contention for the data from both processors. It is

advantageous for us to minimize the amount of other processes able to interfere with the

test.

To tell whether single user mode testing was necessary, we ran the first test, in both

single user mode (level 1), and regular (level 5) mode. Figure C.1 shows the data set

obtained from both. Notice that single user mode results are much more regular.

Appendix C 95

0 5 10 15
7500000000

10000000000
12500000000
15000000000
17500000000
20000000000
22500000000
25000000000
27500000000
30000000000
32500000000
35000000000
37500000000
40000000000
42500000000

Does Single User Mode Work?

Single User Mode
KDE

Trial

C
yc

le
s

Figure C.1. Running a simple test in single user mode, and regular mode. Single user
mode provides more regular results.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria Library, and

to make single copies only for such users or in response to a request from the Library of any

other university, or similar institution, on its behalf or for one of its users. I further agree

that permission for extensive copying of this thesis for scholarly purposes may be granted

by me or a member of the University designated by me. It is understood that copying or

publication of this thesis for financial gain by the University of Victoria shall not be allowed

without my written permission.

Title of Thesis:

SCOPE: Scalable Clustered Objects with Portable Events

Author:

Christopher James Matthews

Signed: July 1, 2006

THESIS WITHHOLDING FORM

At our request, the commencement of the period for which the partial licence shall operate

shall be delayed from August 9, 2006 for a period of at least six months.

(Supervisor)

(Department Chairman)

(Dean of Graduate Studies)

(Signature of Author)

(Date)

Date Submitted to the Dean’s Office:

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Related Work
	 History and Context
	 Concurrency: Interrupts and Multiprogramming

	 Shared Memory Multiprocessors
	 Caching
	 Sharing
	 False Sharing
	 Locality and Sharing

	 Modern Solutions for Utilizing Concurrency
	 Locking
	 Lock-Free Data Structures
	 Read, Copy, Update
	 Software Transactional Memory

	 Clustered Objects: a Proven Solution to Scalable OSes
	 The Need for Speed: Everyone Has It
	 SCOPE

	 Summary

	Background: The Clustered Object Model
	 Object Models
	 Partitioned Objects
	 Clustered Objects as a model of Partitioned Objects
	 The Clustered Object Model: Roots and Representatives

	 Clustered Object Implementation
	 The Clustered Object Manager
	 Translation Tables
	 A Clustered Object's ID
	 Accessing a Clustered Object
	 Garbage Collection
	 K42 Clustered Objects: Implementation Details

	 The benefits of clustered objects
	 Programming Benefits
	 Utilization

	 Summary

	Challenges in Building a New Clustered Object Library: Dependencies and Constraints
	 Leaving the Kernel
	 What are the options?

	 Dependencies
	 Concurrency
	 The Object Translation Facility
	 Kernel Memory Allocation
	 Protected Procedure Call
	 Error Handling

	 Summary

	SCOPE: Prototype Design and Implementation
	 Concurrency
	 Object Translation Facility
	 DREF: the Dereferencing Macro
	 Portability with Events: START_EVENT and END_EVENT
	 Access Patterns and Portability

	 Kernel Memory Allocation Facility
	 Protected Procedure Call Facility
	 Error Handling
	 Implementation Process
	 Summary

	Testing and Validation
	 Evaluating Assumptions
	 Quantifying Sharing
	 The Integer Counter Example
	 Experiment 1: Creating Contended Counters
	 Hardware Setup
	 Software Setup
	 Procedure
	 Quantifying Results
	 Results
	 Lessons Learned: Unanticipated Sharing

	 Performance of SCOPE
	 Experiment 2: Counting Clustered Objects
	 Setup
	 Procedure
	 Results
	 Analysis

	 Reproduction of Benefits
	 Programming Benefits
	 Utilization

	 Summary

	Future Work and Conclusions
	 Future Work
	 Reproduction of Advanced Features
	 KORE
	 Garbage Collection
	 RCU
	 Dynamic Update
	 Portability

	 SCOPE Improvements
	 Improving the Client experience with AOP

	 Conclusions

	Bibliography
	Appendix Test Machines
	 Dual Processor X86

	Appendix Integer Counters
	 The Integer Counter Interface
	 Atomically Accessing an Int
	 The Simple Integer Counter
	 Array Based Integer Counter
	 Padded Array Based Integer Counter

	Appendix Single User Mode

