
GENICloud and TransCloud: Towards a Standard
Interface for Cloud Federates

Andy Bavier
Princeton University

acb@cs.princeton.edu

Yvonne Coady
University of Victoria

ycoady@cs.uvic.ca

Tony Mack
Princeton University

tony.mack@gmail.com

Chris Matthews
University of Victoria

cmatthew@cs.uvic.ca

Joe Mambretti
Northwestern University
j-mambretti@northwestern.edu

Rick McGeer
Hewlett-Packard Laboratories

rick.mcgeer@hp.com

Paul Mueller
TU-Kaiserslautern

pmueller@informatik.uni-kl.de

Alex Snoeren UCSD
snoeren@csucsd.edu

Marco Yuen
Princeton University

marcoy@gmail.com

ABSTRACT
In this paper, we argue that federation of cloud systems re-

quires a standard API for users to create, manage, and destroy
virtual objects, and a standard naming scheme for virtual ob-
jects. We introduce an existing API for this purpose, the Slice-
Based Federation Architecture, and demonstrate that it can be
implemented on a number of existing cloud management sys-
tems. We introduce a simple naming scheme for virtual objects,
and discuss its implementation.

1. Introduction
“Cloud” systems and services refer to the remote alloca-

tion and use of various virtual resources over the Internet.
These resources can range from virtual machines, block stores,
and databases (Amazon EC2 and S3, Rackspace, HP Cloud),
to threads (Microsoft Azure) to language engines and VMs
(Google App Engine). OpenCirrus[1, 20] offers a federated
collection of local clusters, each of which offer a number of vir-
tual resources. The US Global Environment for Network Inno-
vations[12] project offers a heterogeneous collection of virtual
networked resources for researchers in networking, distributed,
and cloud systems.

One model for federated systems, the so-called “Cloud-
bursting” model, involves the use of a relatively small num-
ber of homogeneous systems. In this model, a secondary cloud
system is used for reasons of capacity or cost when the pri-
mary cloud system is saturated. A second model, which is of
interest to us, is when a large number of potentially hetero-
geneous resources are allocated from a large number of dif-
ferent systems, from different administrative domains. There
are a variety of use cases which motivate this second, “Ubiqui-
tous Cloud” model. Content distribution systems which require
proximity to widely-distributed users; robust stores for critical
data, dispersed to prevent damage or destruction in the event

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of local catastrophes; wide-area sensing systems with heavy-
computation based back ends; experimentation on wide area
distributed systems or cloud infrastructure systems; and so on.

An immediate and compelling need for the Ubiquitous
Cloud model is the need to create large-scale testbeds for the
research and education community. Industrial practice has
moved far beyond the capacity of academic research. A Yahoo!
“clique” of servers, an internal unit of management, comprises
20,000 servers and perhaps a quarter-million cores. No single
academic testbed has anything like that capacity.

The Ubiquitous Cloud model exposes a number of issues
in scalability of cloud systems. The most prominent of these
is the need for a common API across heterogeneous systems.
Large-scale distributed systems will typically not be instanti-
ated or managed by a Graphical User Interface, but by tools.
Indeed, users today largely instantiate Cloud jobs on Eucalyp-
tus[9], OpenStack[21] or some commercial systems using the
popular command-line euca2ools[8]. The euca2ools have hard-
coded the API to Eucalyptus systems, which was designed to
be API-compatible with the popular commercial offering Ama-
zon EC2; OpenStack, a later, open-source entrant, supports this
API.

Though the Amazon API is emerging as a de facto standard
in this area, it has a number of weaknesses as a general solution.
The primary weakness is that it is tuned specifically for virtual
machine based compute resources and block stores, and so it
has spread only across systems that offer roughly the same set
of services that Amazon does. Allocation of resources across
heterogeneous systems (such as, for example, allocating a col-
lection of Restricted Python[7] processes from the Seattle[6,
18, 30] testbed, a collection of bare hardware nodes from Pro-
toGENI[28], some cluster-based compute nodes from GENI-
Cloud[16], and some wireless or wimax nodes will require an
API that permits the user to specify, and the cloud systems to
advertise, not simply the number but the kind of available re-
sources.

Authorization and authentication present significant chal-
lenges. Different organizations control different facilities, and
operate in different economic and legal environments. It is im-
practical to expect that these organizations will concur on a
common user database, common set of roles, common pass-
words, or common Acceptable Use Policies. Federated authen-
tication solutions such as Shibboleth[32] have been used, but

present some logistical difficulties: in particular, Shibboleth as-
sumes a persistent and reliable connection between the organi-
zation providing the facility and the organization certifying the
user, and a single oracle for any particular user. Again, this has
been shown to work for a collection of relatively homogenous
environments, but presents obvious problems when used for a
heterogeneous set of facilities.

In this paper, we discuss the use of the GENI standard Slice-
Based Federation Architecture[25] as a standard API for het-
erogeneous cloud systems. The SFA incorporates a simple API
which fits well on existing cloud systems, and augments this
with a resource-specification standard for both requests and al-
location, the RSpec. It further incorporates an authorization
scheme based on unforgeable, self-validating certificates, elim-
inating the need for a centralized database, clearinghouse, or
federated identity mechanism. We show that it has been used
succesfully on a wide variety of virtual resource-as-a-service
facilities.

Our contribution in this paper is to describe an implemen-
tation strategy for the SFA onto legacy Cloud systems. We
have successfully used an SFA implementation to control both
OpenStack and Eucalyptus-based clusters, and use it today to
offer seamless federation between a PlanetLab-based infras-
tructure and an OpenStack-based infrastructure.

Further, when a user creates a large collection of virtual re-
sources, he must be able to name and access them predictably
and easily without manually naming each one. We propose a
simple URL-based naming scheme for these resources.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give a high-level overview of the SFA, with some
short examples of its use. In Section 3, we describe a simple
implementation strategy for the SFA on legacy cloud systems
that we have used succesfully on OpenStack and Eucalyptus. In
Section 4 we describe TransCloud, a naming scheme for large,
heterogeneous, multi-site slices of clouds. In Section 5 we
draw some conclusions, and offer suggestions for future work.

2. The Slice-Based Federation Architec-
ture

The Global Environment for Network Innovations (GENI)
program is a US National Science Foundation program to con-
struct a next-generation testbed for networking and distributed
systems research. It was designed by a team of over 50 US sys-
tems researchers in 2006-2007, following the success of two
precursor systems: Emulab[10, 35] a hardware-as-a-service
cluster at the University of Utah devoted to network experi-
ments and emulation, and PlanetLab[4, 24, 27, 33], a world-
wide containers-as-a-service distributed systems platform de-
veloped by Princeton University, UC-Berkeley, the University
of Washington, Intel, and HP.

GENI soon grew to encompass a number of other control
frameworks and testbeds:

1. ORBIT[22], an experimental testbed for wireless nodes
from the University of Rutgers

2. Seattle[30], a high-level distributed Python environment
from the University of Washington and NYU-Poly

3. FOAM[11], a programmable-networks-as-a-service sys-
tem from Stanford, UC-Berkeley and BigSwitch systems,
which offers isolated layer-2 networks based on Open-
Flow[17, 19] and FlowVisor[31] technology.

Hardware as a Service

VM's as a
Service

Containers
as a

Service

Networks
as a

Service

Language VMs as a
Service

Figure 1: A Simplified Form of the As A Service Stack

ORCA, ProtoGENI

ORCA,
ProtoGENI,
PlanetLab,
GENICloud

ORCA,
ProtoGENI,
PlanetLab,
GENICloud

FOAM

Seattle

Figure 2: A Simplified Form of the GENI Stack

4. ORCA[2, 3], a substrate management system from Duke
University offering multiple physical and virtual compute
resources.

A simplified version of the various computing elements of-
fered as services is shown in Figure 1. Most of these elements
are available from commercial providers. Google App Engine,
for example, is an excellent example of language VM’s as a
stack.

The stack is both more complex than is shown in Figure 1
and contains more elements; we have simplified it for explana-
tory purposes. For example, Language VM’s can rest directly
on hardware, and need not be mediated through virtual ma-
chines or containers, and containers can rest on VM’s if desired.
Further, Storage as a Service (such as Amazon S3) is another
vertical pillar. Nonetheless, this serves to illustrate the point:
distributed systems can be built from a combination of virtual
resources of various types, and an API must accomodate those.

The GENI frameworks fit into the services stack in Figure 1,
with the mapping shown in Figure 2. Again, this is a simplified
picture; it omits ORBIT, and has the same simplifications as in
Figure 1 .

GENI experiments could be expected to span any subset of
these control frameworks. Moreover, each of these was a code-
base, which could be expected to be replicated over a number
of administrative domains. Large experiments are expected to
require the marshalling and orchestration of large numbers of

heterogeneous resources. In sum, software tools were expected
to create and manage disparate resources spread over multiple
administrative domains, running under different management
suites. A common API spanning all of these control frame-
works was required, with a common authorization method and
a common method of advertising resources and servicing re-
source requests. The common API is the Slice-based Federa-
tion Architecture. We detail it here.

The central abstraction in the Slice-Based Federation Ar-
chitecture is a slice of the underlying physical substrate. A
slice refers to the entire collection of virtual compute, com-
munication, and storage resources devoted to an experiment.
One can think of it as a virtual, distributed network of vir-
tual machines devoted to a specific project. For example, the
CoDeeN[23, 34] slice on PlanetLab consists of several hun-
dred Linux VServers[15], distributed at several hundred sites
worldwide, which together implement a Content Distribution
Network. The GENIS3Monitor slice[5] is a scalable, extensi-
ble, and safe network monitoring system for research networks
and clouds.

The notion of a slice is not common among Cloud manage-
ment frameworks, but it provides a number of services to end-
hosts and users. For example, it makes possible global manip-
ulation of the elements of a slice as a unit, without separate
operations on each individual element. Good examples of this
are loading user certificates onto every individual element of
the slice, or doing software loads and boot scripts on every el-
ement of the slice. It also provides a natural unit of resource
allocation and accounting.

Individual virtual resources within slices are referred to as
slivers. Again, a sliver is simply a generalization of the con-
cept of a virtual machine to encompass containers, physical
machines, or even individual named block stores.

The API exported by the SFA is similar to that exported un-
der the euca2ools, or the OpenStack API, with an additional
overlaying set of APIs to manage sets of resources, or slices. It
is an XML/RPC interface over HTTPS, with authentication by
credential.

The central data structure in the SFA is the Resource Specifi-
cation, or RSpec[29]. It is GENI’s mechanism for advertising,
requesting, and describing the resources used by a slice. In
general, it is an XML document. For a machine it will often
describe the instance size requested, whether it needs exclusive
access to a physical host (i.e., requires a host or can live with a
VM), may describe a particular image to be loaded, and so on.
We show one simple example abstracted from the ProtoGENI
RSpec examples, with various namespace details omitted for
space in clarity in Figure 3. The full example can be found at:
http://www.protogeni.net/trac/protogeni/
wiki/RSpecRequestDiskImageExample

The RSpec example shown in Figure 3 requests a physical
host ("raw-pc") and a Fedora Core 10 OS. This is an exam-
ple of a request RSpec, which would be used by a tool to re-
quest a physical node with a specific OS. In addition, an adver-
tisement RSpec is used by a manager of physical resources to
show what is available. A simplified example is shown in Fig-
ure 4, taken from http://www.protogeni.net/trac/
protogeni/wiki/RSpecAdSingleNodeExample

This particular RSpec describes a node with name "pc160",
which is of type "pc850" (850 MHz x86 processor), currently
available for exclusive use. It also matches requests for "pc"
(any x86-based processor). It has two network interfaces.

< r s p e c t y p e =" r e q u e s t ">
<node c l i e n t _ i d =" e x c l u s i v e −0"

component_manager_ id ="
u r n : p u b l i c i d : I D N +emulab . n e t +
a u t h o r i t y +cm" e x c l u s i v e =" t r u e ">

< s l i v e r _ t y p e name=" raw−pc ">
< d i s k _ i m a g e name=" u r n : p u b l i c i d : I D N +

emulab . n e t + image+emulab−ops / /
FEDORA10−STD" / >

< / s l i v e r _ t y p e >
< / node>

< / r s p e c >

Figure 3: ProtoGENI Request RSpec Example

< r s p e c t y p e =" a d v e r t i s e m e n t "
g e n e r a t e d =" 2009−07−21 T19:19:06Z "
v a l i d _ u n t i l =" 2009−07−21 T19:19:06Z " >

<node component_manager_uuid ="
u r n : p u b l i c i d : I D N +emulab . g e n i . emulab .
n e t + a u t h o r i t y +cm"

component_name=" pc160 "
component_uuid =" u r n : p u b l i c i d : I D N +

emulab . g e n i . emulab . n e t +node+
pc160 " >

< node_ type type_name=" pc850 "
t y p e _ s l o t s =" 1 " / >

< node_ type type_name=" pc " t y p e _ s l o t s =
" 1 " / >

< a v a i l a b l e > t r u e < / a v a i l a b l e >
< e x c l u s i v e > t r u e < / e x c l u s i v e >
< i n t e r f a c e component_ id ="

u r n : p u b l i c i d : I D N +emulab . g e n i .
emulab . n e t + i n t e r f a c e + p c 1 6 0 : e t h 0 " / >

< i n t e r f a c e component_ id ="
u r n : p u b l i c i d : I D N +emulab . g e n i .
emulab . n e t + i n t e r f a c e + p c 1 6 0 : e t h 1 " / >

< / node>
< / r s p e c >

Figure 4: ProtoGENI Advertisement RSpec Example

In addition (for reasons of space we will omit an example)
there is a third type of RSpec: the Manifest Rspec. This de-
scribes a resource requested by and granted to a slice; it shows a
fulfilled request. Though the example RSpec’s we have shown
have come from ProtoGENI, the essential features are uniform
across the various GENI Control Frameworks.

Physical devices in the SFA are referred to as Components,
which are formally defined as collections of physical resources.
A simple example is a server, but others include programmable
switch, Open WRT access point, dedicated software router,
and so on. Components are controlled by Component Man-
agers (note that in Figure 4, the node rspec had a compo-
nent_manager attribute; that had the URN of manager of that
component). One can think of a Component Manager as having
roughly the same capabilities and duties as a Eucalyptus Node
Controller.

Components in the SFA are grouped into Aggregates. Again,
a simple example of an Aggregate is a cluster; another exam-

Figure 5: GENICloud Sites

ple is a distributed platform such as PlanetLab, or a collection
of OpenFlow switches. An Aggregate is managed by an Ag-
gregate Manager, which has roughly the same function as a
Eucalyptus Cluster Controller. However, Aggregates can be
hierarchical, which means that Aggregates can contain other
Aggregates as well as Components. One use case for this is
where a cluster such as ProtoGENI contains a set of OpenFlow
switches with a distinct manager; in order to allocate a slice
containing dedicated nodes hooked up to a progammable net-
work slice, the cluster AM makes requests of the AM responsi-
ble for the collection of OpenFlow switches. This implies that
the AM interface is a superset of the CM interface, since the
AM must respond to component requests.

The SFA defines global identifiers (GID) for all entities in
the federated system: principals, slices, physical components,
services, etc.[25] The GID is an unforgeable certificate, signed
by one or more entities, that binds together three pieces of in-
formation: the object’s public key, a unique identifier (e.g., a
UUID), and a lifetime. Any entity may verify a GID via cryp-
tographic keys that lead back, through a chain of endorsements,
to a well-known root; in this way the receiver of a GID can au-
thenticate that the sending object is the one to which the GID
was actually issued. A GID signed with its own private key is
called a self-certifiying ID or SCID. A SCID establishes the is-
suing entity’s right to assert attributes or authorization rules for
the named object.

3. Implementing the SFA on Legacy Cloud
Management Systems

The SFA has proven to be an effective abstraction over exist-
ing legacy infrastructures such as Emulab and PlanetLab, and
thus a candidate as an effective overlying API for general as-a-
Service computational infrastructures. Further, it has been able
to accomodate unanticipated infrastructures such as virtualiz-
able switching fabrics (OpenFlow).

We have been investigating whether the SFA can be used as
an overlying API for general cloud frameworks in the GENI-
Cloud[16] project. We sought to answer three questions:

1. Can the SFA overlay an existing cloud management sys-
tem, designed entirely independently of the SFA?

2. Can we manage clusters using different specific manage-
ment systems, each of which presents an SFA interface,
and create slices which span the different systems?

3. Can we use the SFA to manage a multi-site cloud system?

We built a four-site Cloud system, using varying underly-
ing resources to manage each site, and managing them with the
SFA. We show the sites in Figure 5. The four are HP Labs,
as part of the OpenCirrus cluster[20], Northwestern University,
UC San Diego, and the Technical University of Kaiserslautern.

SFA Layer

Node
Controller

Cloud
Controller

User Requests

Figure 6: SFA-on-Cloud Architecture

The four sites run different management stacks on the local
clusters, but appear homogeneous through the SFA.

A further motivation for the GENICloud effort was to feder-
ate cloud systems into the distributed and experimental infras-
tructures provided by GENI. Current GENI platforms largely
are not designed to scale rapidly on demand. Under the fed-
eration of a standard Cloud platform and GENI, a more com-
prehensive platform is available to users; for example, devel-
opment, computation, data generation can be done within the
cloud, and deployment of the applications and services can be
done on distributed platforms (e.g., PlanetLab). By taking ad-
vantage of cloud computing, GENI users can dynamically scale
their services on GENI depending on the demand of their ser-
vices, and benefit from other services and uses of the cloud.
Take a service that analyzes traffic data as an example; the ser-
vice can deploy traffic collectors to collect Internet traffic data
on PlanetLab . The traffic collected can be stored and processed
in the cloud.

PlanetLab, being a part of the GENI project as one of the
control frameworks, has high global penetration. However,
it was not designed for either scalable computation nor large
data services. Some services and experiments require a huge
amount of data or they need to persist a large amount of instru-
mental data; also, it lacks the computation power for CPU in-
tensive services or experiments. GENICloud fills in the gap by
federating heterogeneous resources, in this case, a cloud plat-
form with PlanetLab.

Most of the implementation effort of GENICloud concen-
trated on implementing the aggregate manager on top of the
existing Cloud Controller, under both Eucalyptus and Open-
Stack. A key design choice was whether to modify the existing
Controller, or use an overlying controller which implemented
SFA API calls by calling through to the underlying controller.

We chose the latter, and the resulting architecture is shown
in Figure 6. In this architecture, both the fact that the user is
coming through an SFA layer and the identity of the underly-
ing controller is hidden. The SFA aggregate manager acts an
mediator between user requests and an underlying cloud. The
primary advantage is that we need not maintain modifications

and patches in existing Cloud managers, updating them as new
modifications come out; rather, we only need up date our Ag-
gregate Manager as the interface to the Cloud manager changes.
We have not yet implemented, but do not exclude, Cloud con-
troller specific optimizations for controllers with specific opti-
mizations such as Tashi[13]. A secondary advantage is that the
identity of the underlying Cloud controller is hidden from the
user, meaning that user-facing tools and scripts don’t change
when the underlying Cloud controller is hidden.

The Aggregate Manager manages the creation of cloud in-
stances for a slice, and maintains a mapping of slices and in-
stances. The Aggregate Manager offers RSpecs for the VM’s
and containers created by the underlying cloud, and manipu-
lates the underlying Node Controller and Cluster Controller to
serbvice user requests.

The resource specification format for VM’s and containers
closely mirrors the RSpec formats seen previously, and indeed
we were able to re-use the ProtoGENI RSpecs for Virtual ma-
chines, and the PlanetLab RSpecs for containers.

In our design, the SFA is essentially a proxy between the
user and OpenStack. Users authenticate to the SFA and are
authorized to perform specific actions in the SFA API using
SFA credentials. All authorization policy checks occur in the
SFA layer. This insulates the Cloud Controller from any over-
lying policy changes at the SFA layer, such as the proposed
move towards Attribute-Based Access Control, or ABAC, a
self-verifying capability system[14].

We have implemented the SFA layer over OpenStack and
Eucalyptus. Currently, our Palo Alto site is running Open-
Stack under the SFA, and UCSD, Northwestern and TU-
Kaiserslautern are running PlanetLab under the SFA, using the
MyPLC cluster controller[26]. We have succesfully transi-
tioned the Palo Alto site from Eucalyptus to MyPLC to Open-
Stack, without changing the overlying SFA interface.

4. Naming Scheme: TransCloud
A key for large-scale, multi-site, multi-administrative do-

main slice is the ability for the user to administer his slice,
orchestrate the action of the slice’s slivers, and easily config-
ure the slivers in his slice to communicate. In order to do this, a
standard naming scheme for slivers is required. DNS services
will take care of communication when the slice is set up.

Here, we propose such a naming scheme and DNS imple-
mentation. Our scheme is inspired by the naming scheme
of Emulab[10]. In Emulab, the fundamental subdomain is a
“project”, which is a group of researchers who create “experi-
ments” in pursuit of some research goal. Emulab’s experiment
is simply a slice; a project is an overlying space used for re-
source allocation, directory structures, storage of related data,
and also provides a namespace to permit researchers to isolate
namespaces.

Using the terminology that we’ve been using in this paper,
each sliver in an Emulab slice is named <sliver-name>
.<slice-name>.<project-name>.emulab.net;
e.g., sender.baselineqos19.chart.emulab.net.
In this case, sender names the node, baselineqos19
the experiment, and chart the project. Nodes within a
slice can simply use the <sliver-name> and this resolves
to the appropriate FQDN. Use of project as a namespace
partition is not in the SFA and is not a feature of other control
frameworks such as PlanetLab, but it has its uses. In particular,
PlanetLab prepends the name of the host institution on a slice

name to prevent slice namespace contention; the CoDeen
slice is notcodeen, but rather princeton_codeen. The
PlanetLab convention is an alternative.

Emulab achieves this by using its own internal DNS servers
and updating the DNS entries when an experiment is swapped
in. We propose to use the same method.

Emulab was conceived as a single-site, single-administrative
domain testbed. We are designing for multi-site, multi-domain
administration, so we modify the Emulab scheme to accomo-
date this. This means that we must incorporate both the site
name and the administrative domain name in the URL; both
must be accomodated because the site of a sliver can be im-
portant (consider a Content Distribution Network or real-time
sensitive server, for example); and the administrative domain is
the entity that will actually allocate the slice.

There are two fundamental principles that underlie our
scheme. First, administrative domains must make only three
agreements: they will run the SFA, accept GID’s as creden-
tials, and implement the TransCloud naming schement. The
second principle is that names should be allocated to slices and
projects at highest level in the hierarchy possible.

The first principle argues that projects and slices do not span
administrative domains, since this would imply that adminis-
trative domains need to agree on a common project namespace.
The second argues that slices and projects should be defined at
the administrative domain level, since a single administrative
domain can administer projects and slices that span multiple
sites, and there is value to users in creating multi-site slices.

We have obtained trans-cloud.net as the root
domain, so our scheme is then: <sliver-name>
.<site-name>.<slice-name>.<project-name>
.<domain-name>.trans-cloud.net. Again,
appropriate DNS work will permit the use of
<sliver-name>.<site-name> within a slice.

Root storage at a site, and global ssh logins, should
be to users.<site-name>.<domain-name>
.trans-cloud.net; this is the equivalent of
users.emulab.net.

Interactions with the Domain authority occurs through
<authority-name>.trans-cloud.org; the .org
domain is for administrative access (e.g., certificate upload and
renewal, slice creation and management, and the like); the
.net domain for experimental access.

5. Conclusions
In this paper we have demonstrated the implementation of

SFA on two legacy Cloud architectures, and shown the feasibil-
ity of a cross-site, cross-manager SFA implementation. GENI-
Cloud is a single administrative domain spanning four sites and
two aggregate managers. We have proposed a naming scheme
for a unified, multi-site, multi-domain distributed cloud infras-
tructure.

Acknowledgements
This work was partially supported by the GENI Project Of-

fice under contract GENI 1779B. The GENI Project Office is
funded by the National Science Foundation’s CISE Division.

6. References
[1] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko,

G. Ganger, M. Kozuch, D. O’Hallaron, M. Kunze,
T. Kwan, K. Lai, M. Lyons, D. Milojicic, H. Y. Lee, Y. C.

Soh, N. K. Ming, J.-Y. Luke, and H. Namgoong. Open
cirrus: A global cloud computing testbed. Computer,
43(4):35 –43, april 2010.

[2] I. Baldine, Y. Xin, A. M, C. Heermann, J. Chase,
V. Marupadi, A. Yumerefendi, and D. Irwin. Networked
cloud orchestration: A geni perspective. In 2010
Globecom Workshops, 2010.

[3] I. Baldine, Y. Xin, A. Mandal, P. Ruth, A. Yumerefendi,
and J. Chase. Exogeni: A multi-domain
infrastructure-as-a-service testbed. In Proceedings
Tridentcom, 2012, 2012.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and
M. Wawrzoniak. Operating system support for
planetary-scale network services. In NSDI, May 2004.

[5] E. Blanton, S. Chatterjee, S. Gangam, S. Kala,
D. Sharma, S. Fahmy, and P. Sharma. Design and
evaluation of the s3 monitor network measurement
service on geni. In COMSNETS, pages 1–10, 2012.

[6] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Seattle: a platform for educational cloud
computing. SIGCSE Bull., 41(1):111–115, 2009.

[7] J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
I. Beschastnikh, C. Barsan, A. Krishnamurthy, and
T. Anderson. Retaining Sandbox Containment Despite
Bugs in Privileged Memory-Safe Code. In The 17th
ACM Conference on Computer and Communications
Security (CCS ’10). ACM, 2010.

[8] Euca2ools. http://open.eucalyptus.com/
wiki/Euca2oolsGuide_v1.3.

[9] Eucalyptus. http://www.eucalyptus.com/.
[10] Emulab website. http://www.emulab.net.
[11] Foam. https://openflow.stanford.edu/

display/FOAM/Home.
[12] Geni project website. http://www.geni.net.
[13] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser,

D. O’Hallaron, J. Cipar, E. Krevat, J. López,
M. Stroucken, and G. R. Ganger. Tashi: location-aware
cluster management. In Proceedings of the 1st workshop
on Automated control for datacenters and clouds, ACDC
’09, pages 43–48, New York, NY, USA, 2009. ACM.

[14] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of
a role-based trust-management framework. In IEEE
Symposium on Security and Privacy, pages 114–130,
2002.

[15] Linux vservers. http://linux-vserver.org/
Welcome_to_Linux-VServer.org.

[16] R. McGeer, A. AuYoung, A. Bavier, J. Blaine, Y. Coady,
J. Mambretti, C. Matthews, C. Pearson, A. Snoeren, and
M. Yuen. Transcloud: Design considerations for a
high-performance cloud architecture across multiple
administrative domains. In Proceedings CLOSER, 2011.

[17] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev, 38:69–74,
March.

[18] Monzur Muhammad and Justin Cappos. Towards a
Representive Testbed: Harnessing Volunteers for
Networks Research. In The First GENI Research and
Educational Workshop, GENI’12, 2012.

[19] Openflow website. http://www.openflow.org.

[20] Opencirrus. http://opencirrus.org/.
[21] Openstack. http://openstack.org/.
[22] Orbit. http://www.winlab.rutgers.edu/

docs/focus/ORBIT.html.
[23] V. S. Pai, L. Wang, K. Park, R. Pang, and L. Peterson.

The dark side of the web: An open proxy’s view. In
HotNets, 2003.

[24] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir.
Experiences implementing planetlab. In OSDI,
November 2006.

[25] L. Peterson et al. Slice-based federation architecture, v
2.0. http:
//groups.geni.net/geni/attachment/
wiki/SliceFedArch/SFA2.0.pdf.

[26] MyPLC User guide.
http://www.planet-lab.org/doc/myplc.

[27] Planetlab. http://www.planet-lab.net.
[28] Protogeni web site. http:

//www.protogeni.net/trac/protogeni.
[29] Protogeni rspec. http://www.protogeni.net/

trac/protogeni/wiki/RSpec.
[30] Seattle.

https://seattle.cs.washington.edu/.
[31] R. Sherwood. Safely using your production network as a

testbed. Login; Magazine, 36(1), February 2011.
[32] Shibboleth. http://shibboleth.net.
[33] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using

planetlab for network research: myths, realities, and best
practices. In IN PROCEEDINGS OF THE SECOND
USENIX WORKSHOP ON REAL, LARGE
DISTRIBUTED SYSTEMS (WORLDS), pages 17–24,
2006.

[34] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson.
Reliability and security in the codeen content distribution
network. In In USENIX Annual Technical Conference,
General Track (2004, pages 171–184, 2004.

[35] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and network. In Proceedings of OSDI 02, 2002.

